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ABSTRACT

A Unified Approach to Estimating Tail Behavior. (May 1989)

Scott D Grimshaw, B.S., Southern Utah State College;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Emanuel Parzen

Tail estimators are proposed which make minimal assumptions and let the

data dictate the form of the probability model. These estimators use only the

observations in the tail and are based on a unifying density-quantile model. The

fundamental result in this work is a representation of the quantile function of the

exceedences over a threshold. This representation (1) motivates a unified param-

eterization for tail estimators of the underlying probability model; (2) motivates

methods for obtaining parameter estimates; and (3) simplifies the derivation of

the asymptotic properties of the proposed parameter estimates.

Parameter estimates may be obtained using a Generalized Pareto Distri-

bution or a Generalized Extreme Value Distribution model of the exceedences.

Assuming the underlying distribution can be correctly classified as either short

tailed or long tailed, other estimates are formed. The asymptotic properties of

these estimates are derived under rate of convergence conditions to show the

effect of threshold selection on parameter properties. (1I ) -

The parameters are shown to be nonidentifiable and their estimators contain

a bias which may approach zero very slowly. Therefore, if the parameters are the

focus of the analysis, extremely large sample sizes are required to reduce the bias

to a negligible amount. If the tail estimates are of interest, the bias is less likely

to be serious and the nonidentifiability problem provides a closer approximation

to the tail for small samples.
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1. INTRODUCTION

Suppose that the possible observed values from a population can be char-

acterized by a random variable X whose probability model is estimated using a

sample from the population. The properties of this estimated probability model

which correspond to the population characteristics of interest are the foundation

of statistical analysis.

Three important functions of a probability model for a continuous random

variable are the absolutely continuous distribution function F(x), the quantile

function Q(u), and the density function f(z). The significance of these three

functions in statistical analysis follows from their interpretation as key properties

of the population.

For example, the distribution function F(z) is the probability that an ob-

served value from the population will be less than or equal to a given value of x,

i.e. F(z) = P[X < z]. In applications where the observed values are times until

failure or death, the distribution function for a given value of z is the probability

that the lifetime will be less than or equal to z. A more optimistic expression of

this information is the survival function used in reliability. The probability that

the lifetime will exceed a given value of z is S(x) = P[X > zx = 1 - F(z).

The quantile function Q(u) is the smallest value of z such that the probability

of a value greater than or equal to z is equal to u, i.e. Q(u) = F- 1 (u) = infjx :

F(x) = u}. In applications, the quantile function is used to determine the value

of x such that an observed value of this magnitude (or greater) occurs with

probability u for a given value of u.

The density function f(x) of an absolutely continuous distribution function

represents the probability X is in the interval (a, b) for a < b as the area under

the density function between a and b, i.e. P[a < X < b= f a f(x)dx. The

density function is used to describe many properties of the population graphically.

Characteristics such as modality and skewness are evident from plots of f(x).

In some applications, the population characteristics of primary interest cor-

The format and style follows that of The Annals of Statistics.
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respond to the tails of the distribution function, quantile function, and density

function. For example, an experimenter investigating the lifetime of a product

will want the probability of an early death or an exceptionally long life. That

is, the value of the distribution function F(x) for values of x with F(x) near

zero or values of x with F(x) near one. A hydrologist analyzing an annual flood

record will want the magnitude of rare high level floods. That is, the value of the

quantile function Q(u) for values of u near one. An experimenter may investigate

the tails of the density function f(x) to graphically display the concentration of

possible values at the extremes.

This work focuses on the problem of estimating the tails of F(x), Q(u), and

f(x) from a random sample. The most basic estimators of F(z) and Q(u) from

a sample of size n are the sample distribution function defined as

r() = {fraction of the observed values less than or equal to x}, x E IR,

and the sample quantile function defined as

Q-(u) = { [nu + 1]th largest observed value}, 0 < u < 1,

where [.] denotes the greatest integer operation. Nonparametric density estima-

tors follow this same vein as basic estimators of the density function.

The sample distribution function, sample quantile function, and nonpara-

metric density estimate are typically used in early stages of statistical analy-

sis since they make minimal assumptions on the underlying probability model.

These estimators are important data analytic tools used as other known charac-

teristics of the population are incorporated to formulate other estimates.

The classical approach to tail estimation is to assume the underlying prob-

ability model belongs to some known class P whose elements are indexed by a

parameter 0 taking values in a set E, i.e. P = {P9,9 E E). The distribution

function, quantile function, and density function then have parametric represen-

tations F(x; 9), Q(u; 0), and f(x; 0). Tail estimates are given by F(x; i), Q(u; 0),

and f(x; 0), where 0 denotes an estimate of the parameter 9 based on the sample

from the population.
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The beauty of this classical parametric approach is tarnished by what Fisher

(1948) called the problem of specification. Often it is difficult to select a single

parametric family for the population. Several candidates may appear reasonable

judging from their fit to the observed values.

To demonstrate this complication, suppose that a random sample is taken

from a population characterized by a symmetric unimodal probability model.

Two possible parametric families are the normal and the Cauchy. Figure 1 con-

tains graphs of estimated F(x), Q(u), and f(x) when a sample of n = 20 from a

symmetric unimodal probability model are treated as a sample from a normal dis-

tribution and a Cauchy distribution. Both estimates are overlaid on the sample

distribution function, sample quantile function, and a kernel density estimator.

Estimated Distrihution functions Estimted Quantile Functions

.4- -

.2 -4
-. .-4 3 2 - 1 2 3 4 .1 .2 .3 .4 .5 .6 .7 .1 .91

.3 Estimated hnsitV Functions

,1

-5 -4 -3 -2 -11 1 2 3 4

FIG. 1. Estimated F(x), Q(u), and () when a sample of n = 20 from a sym-
metric unimodal probability model is treated as a sample from a normal distribu-
tion (solid line with blocks) and a Cauchy distribution (dotted line). Estimates
are overlaid on the sample distribution function, sample quantile junction, and
a kernel estimate of the density function (solid line). The normal and Cauchy
modeling lead to very different tail inference despite yielding similar inference for
central values.

Notice that the two parametric estimators yield similar inference for central

values of the random variable. However, the focus of this work is on tail values,

not central values, and inference at the tails is quite different under the two
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parametric models. Extremely small and extremely large values are much more

likely under the Cauchy modeling. The distribution function F(z) approaches

zero and one much more rapidly under the normality assumption. The quantile

function Q(u) for the Cauchy model decreases more rapidly in a neighborhood of

zero and increases more rapidly in a neighborhood of one. The density function

f'(z) for the Cauchy model has much more area in the tail.

It is very difficult to discriminate between the different possible parame-

terizations even when the possible parametric models specify very different tail

properties. In this example, the sample size is too small for a goodness of fit test

to have sufficient power to detect differences in the observed tail and the fitted

tail under the normal and Cauchy modeling. The tails of the sample distri-

bution function, sample quantile function, and nonparametric density estimates

have insufficient observations in the tail to indicate important properties of tail

behavior.

This work proposes estimators of F(z), Q(u), and f(z) which are applicable

under minimal assumptions. These estimators can be used in applications where

little is known about the underlying population. The estimators can also be

used in a data analytic sense to validate tail behavior properties in probability

modeling applications. The work is outlined as follows.

Section 2 proposes the model for tail behavior, defines tail behavior param-

eters, and summarizes the characteristics of these parameters. The model for

tail behavior is a basic result from which two approaches to tail estimation can

be unified. Generally applicable tail estimates are proposed using only those

observations which exceed a threshold value, i.e. the observations in the tail.

The fundamental result of this work is stated in this section. The quantile

function for the exceedences can be represented as the sum of a function which

can be parameterized and a deterministic error function demonstrating the de-

uendence on the threshold value. This representation motivates a parametric

,,ail estimation model, motivates methods for obtaining parameter estimates,

and simplifies the derivation of asymptotic properties of the proposed parameter

c. .imates.
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Three approaches to the problem of parameter estimation are considered.

The first two treat the exceedences as a random sample from a parametric fam-

ily motivated from the representation for the quantile function of the exceedences.

Section 3 investigates the Generalized Pareto distribution (GPD) modeling and

Section 4 investigates the Generalized Extreme Value (GEV) distribution mod-

eling.

An innovative approach to tail parameter estimates using the ideas of con-

tinuous parameter time series on the quantile process is introduced. These ideas

are stimulated from the work of Parzen (1979) on location and scale parameter

estimates.

The most popular choice for parameter estimates is maximum likelihood.

A new algorithm is proposed for the numerical computation of the GPD maxi-

mum likelihood estimates. This algorithm corrects the inadequacies of common

Newton-Raphson type algorithms.

The second approach to tail estimates follows from representations which

are derived from the general tail behavior model. Section 5 proposes parameter

estimates based on the largest order statistics assuming a parametric model is

valid beyond the threshold. The properties of these estimators are treated in two

cases since the parameterization for the tail depends on a prior assumption on

the tail behavior.

A comparison of the different parameter estimates is made in Section 6. All

the estimators are shown to be biased, and no global statements can be made

regarding an 'optimal' estimator. A popular use of the parameter estimates is as

diagnostics for existence of variance and higher order moments. However, great

caution must be exercised in interpreting parameter estimates for reasons given

in this section.

Section 7 discusses the important question of threshold selection. In order

to reduce the bias, the threshold must be chosen as large as possible. However,

this reduces the number of observations used in the estimators and inflates the

variance of the estimates. A threshold selection procedure is proposed which min-

imizes the distance between the estimated distribution function and the sample
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distribution function over the tail values.

A motivating example is provided in Section 8. The data for this example

considers the problem of estimating the tail of the quantile function for two rivers

from a history of observed annual floods. The high dependency on the choice of

parametric family is demonstrated. The tail estimators proposed in this work

are applied as alternative estimators which make minimal assumptions on the

underlying probability model.

Concluding remarks are made in Section 9.
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2. EXCEEDENCE OVER THRESHOLD APPROACH

TO TAIL ESTIMATES

2.1. A Unifying Model For Tail Behavior

2.1.1. Notation. Let X1 ,...,X, be a random sample from a population

with strictly increasing, absolutely continuous distribution function F(z), density

function f(z) = F'(z), quantile function

Q(u) - F- 1 (u) = inf{x : F(x) > u}, 0 < u < 1

denity-quantile function fQ(u) = f o Q(u), and quantile density function q(u) =

Q'(u). Notice that fQ(u) q(u) = 1.

From the random sample, define the sample distribution function

F(x) =-, X(i;n) <x < X(i+ 1;n), i =0,1,-,n,
n

and the sample quantile function

Q-(u) = X(i;n), <- <u<-, i= n,

n n

where X(i; n) denotes the ith order statistic in the random sample of size n,

X(O; n) = -0o, and X(n + 1; n) = o.

2.1.2. Tail Behavior Model. Parzen (1979) has suggested that the behavior

of the density-quantile function fQ(u) in the neighborhood of u = 0 and u = 1

can be used to classify the tail behavior of a probability model. The classification

of any continuous probability model follows from expressing

(2.1.1) fQ(1 - u) = u+'L(u),

where p is called the right tail exponent of the probability model and L(u) is a

slowly varying function as u --- 0+, i.e. L(u) is a positive measurable function

defined on [0, oo) satisfying

urm L(,u) =1 for allA>0.
u-.O+ L(u)
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Table 1 contains examples of common parametric probability models from Ap-

pendix A expressed according to (2.1.1).

An associated left tail exponent can be defined also. However, this work

considers only the right tail without loss of generality since applications to the

left tail can be made by negating the random variable.

The tail exponent p is finite if and only if X, has a finite moment of order 6

for some 6 > 0. In this research, only continuous probability models where (2.1.1)

holds with finite p are considered. However, this is not an all inclusive family. For

example, a random variable with distribution function F(z) = 1 - (In z), z > e

has p = oo (and hence no finite moments).

Estimating the tail exponent has become popular because p < 1/6 if and

only if EIXlI6 < oo. In particular, testing H, : p < 1 is used as a diagnostic for

finite variance. Other work on tail exponent estimation expresses the distribution

function as F(z) = 1 - zx-LS(x), where a > 0 and L*(z) is a slowly varying

function as z --+ oo. It is shown in Section 5 that these two parameterizations

for the tail exponent satisfy pa - 1 for a, p > 0.

The use of slowly varying functions in defining the tail exponent is just one

application of the concept introduced in 1930 by J. Karamata as a suitable class of

functions in connection with a Tauberian theorem for Laplace transforms. Bing-

ham, Goldie, and Teugels (1987) review the generalization to regularly varying

functions and provide examples of applications to probability theory in the ar-

eas of stability and domains of attraction, central limit theory, renewal theory,

queues, occupation times, and extreme value theory.

Examples of slowly varying functions as u -- 0+ include:

(i) any positive measurable functions with positive limits at zero; for exam-

ple, L(u) = A[1+O(r(u))J where A > 0 and r(.) is a positive measurable

function with limt.0+ r(u) = 0;

(ii) L(u) = -lnu;

(iii) L(u) =Inln...(-Inu);

(iv) L(u) = exp{ [- In ul-olfln(- In u)] 12... [In n... ln(- In u)J*}, where k

is a positive integer and 0 < ai < 1 for i =k;
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TABLE I
Common parametric probability models expressed as tail behavior models where
fQ(1 - u) = uP+lL(u). The parameter p is the tail exponent and L(u) is a
slowly varying function as u -+ 0+. In some cases, an asymptotically equivalent
expression for L(u) is given which is in the form of the slowly varying function
examples.

Distribution Density-Quantile Function

Uniform fQ(1 - U) = U- 1+ 1 . 1

Neg. Exponential fQ(1 - u) = u - 1+ 1 . (21n3)(1 - u)

Neg. Weibull(p) fQ(1 - u) = u(-1/P)+1 .op(1 - u)[-u- 1 In(1 - u)](-1/P)+1

SU(-/P) + . ap[1 - .5(3 - p-))ul

as u - 0+

Exponential fQ(1 - u) = u + 1 (2 In 3)

Logistic fQ(1 - u) = u0+ 1 . (4 In3)(1 - u)

Normal fQ(1 - u) = u0 + 1 . af-l(1 - u)]/U
,,-u 0 + 1 .a(-21nu) 1/ 2 as u-... +

Weibull(p) fQ(1-u) = u° + 1 .ap(-lnu)(-1/)+1

Lognormal fQ(1 - U) = u °+ 1 • - u)]/u e-0-1(1-u)

~ u° + 1 .a(-2Inu)1/2 . e - ' - ( 1-

as u --+ 0+

Cauchy fQ(1 - U) - U1+ 1 (4/r)[sin2 7r(1 _ u)]/u 2

~u +i .41[rl- (W2 /3)u2  as u -. 0+

Pareto(p) fQ(1 - u) u( 11
-

) + 1 .op

Frdchet(p) f Q(1 - u) - u(1/ P)+ " ap(1 - u)[-u- 1 In(1 - U)](1/ P)+ I

U(/P) + . ,p[1 - .5(3 + p- 1 )u]

as u -.. 0+

Note: See Appendix A for the definition of a, a different scale constant for each
different distribution.
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(v) L(u) = exp{ [- In ul/[ln(-In u)}

Further examples of slowly varying functions can be generated from those given

by noting two properties of slowly varying functions:

(a) if L(u) varies slowly as u - 0 + , so does [L(u)Ja for all a E R;

(b) if Lj(u) and L2 (u) vary slowly as u -+ 0+ , so do Lj(u) • L2 (u) and

Ll(u) + L2 (u). Further, if L2 (u) --+ 0 as u --+ 0+ , then L1 o L 2 (u) is also

slowly varying as u --+ 0+ .

Some of the tail behavior representations given in Table 1 contain asymptotically

equivalent expressions for L(u) as examples of the formulations for slowly varying

functions and the properties given above.

2.2. Conditional Distribution Of The Exceedence Over A Threshold

This research proposes estimates of the tails of the distribution function,

density function, and quantile function for the family of random variables with

finite p. These estimators use only the exceedences over a high threshold value.

This approach allows the observed values in the tail to dictate the tail estimate.

The exceedence over a threshold is denoted by X - T given X > T for a given

threshold T satisfying Q(0) < T < Q(1). It is easily shown that the exceedences

have distribution function

F X-T IX>T (-; T) = F(T + x) - F(T) X>01- F(T)

This distribution function expression is used by other authors to derive properties

of tail estimates and tail exponent estimates.

However, this work suggests a representation for the quantile function of the

exceedences which

(1) motivates a unified parameterization for the tail of F(x), f(x), and Q(u);

(2) motivates parameter estimates; and

(3) simplifies the derivation of the asymptotic properties of the parameter esti-

mates and the tail estimates for F(z), f(z), and Q(u).

Before stating this representation in the following theorem, define the hazard



quantile function as
hQ() =hoQ(u) f o Q(u) _ fQ(u)

1- F o Q(U) 1-u

and the power transformation (also called the Box-Cox (1964) transformation)

for z >0 and AE IR as

zAg (Z;X) = A, I

In z, A= 0.

THEOREM 2.2.1. Suppose that fQ(1 - u) = uP+lL(u), where p E R and

L(u) is slowly varying as u -, 0+ . Then

(2.2.1) Q X-T I X>T (u; T) - hQ(1- t*) [-g(1 - U, -p) + e(t* 1 - iP)]

where t* = 1 - F(T) and

f (t u" ) =__ ['-- [ L ( t ) - 1] dz.

The proof of this theorem and those that follow in this subsection are given

in Appendix B.

The representation given by (2.2.1) expresses the quantile function for the

exceedences as the sum of two functions. The first does not depend on the thresh-

old and motivates a parametric model for the quantile function of the exceedences

based on the tail exponent p. The deterministic error function f(t, UI, p) expresses

the systematic bias of this parameterization.

The convergence of e(t, UI, p) to zero as T - Q(1)- is an important property.

The following theorem states the uniform convergence and a rate of convergence

result for the deterministic error function.

THEOREM 2.2.2. Suppose that fQ(1 - u) = uP+1 L(u), where p E R and

L(u) is slowly varying as u --- 0+ .
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(a) Then, for every 0 < 6 < 1, limT.Q(1)- (t*,u,p) = 0 uniformly in 6 < u <

1, where t" = 1 - F(t).

(b) Further suppose that
L(t) -1 <A(u)R(t)
L(tu) -

for some positive measurable functions A(u) and R(t) where limt.o+ R(t) =

0. Then there exists a positive measurable function A*(u) such that

Ie(t,u,p)I <_ A*(u)R(t).

Previous work with the exceedences assumes T -- Q(1)- which permits the

simplification with e(t*, 1-u, p) = 0. The effect of the rate at which the threshold

converges is revealed in the generalization in this work to rates of convergence for

e(t, u,p). For example, the most popular expression for L(u) in the exceedence

literature is L(u) = Afi + O(u 7)], for A > 0, -1 > 0. In this case, T - Q(1)-

such that R(t*) = (t*7') -- 0 where t* = 1 - F(T). However, the thresholds may

be required to converge much more rapidly. If, for example, L(u) - - In u, then

T --+ Q(1)- satisfying R(t*) = -1/ Int --+ 0.

2.3. Tail Estimates Based On Exceedences Over A Threshold

An important use of the representation (2.2.1) for the quantile function of

the exceedences is the parametric model suggested for the tails of the quantile

function, distribution function, and density function of the underlying popula-

tion.

To begin motivating this parameterization, first notice that the hazard quan-

tile function hQ(.) is used in (2.2.1) as a standardization, but any positive mea-

surable function a(.) satisfying limt.,0+ a(t) .hQ(I - t) = 1 may replace hQ(1 - t).

This gives the more general expression

(2.3.1) Q X-T I X>T (u;T) = a(t*)[-g(1 - u; -p) + c(t*, - u,p)]

where t* = 1 - F(T). The effect on the rate of convergence result is that

lI(t, 1 - u,p)l _ A'(u)R*(t*) if a(t)hQ(1 - t) = 1 + O(Rl(t)), where R*(t) =

max(R(t), R1 (t)).
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The quantile function of the underlying population can be expressed by

unconditioning the quantile function of the exceedences. The expression for the

distribution function follows by inversion, and from that, the density function

expression follows by differentiation. Hence, the tails can be written as

(2.3.2) Q(u) = T + a(t') [-g (- ;-p) + EQ(t,

for 1 -t* < u < 1

(2.3.3) F(z) = 1-t- -g- 1  () (z-T);-p +EF(t*,z,p)

for T < z < Q(1)

(2.3.4) f(z) = t* a(t*) a(t*) x - T);-p + f(t*,z,p)

for T<z <Q(i)

where

(1+ Az)1/A, A <0, z<0

- CZ, A=O, z<0

(1 + Az) l / ) , A>O, -1/A<z<0
and

f (1+ Az)(/A)-1, A <0, z <0

(g- 1 )'(z,) = eZ, A = 0, z <o

S(+Az)(1/A - , A>O, -1/A<z<O

It is easy to show that if IE(t,u,p) A*(u)R*(t) for some positive mea-

surable functions A*(u) and R'(t) where limt_..o+ R*(t) = 0, then IeQ(t,u,p)f !5

A*(u)R*(t), IEF(t,z,p)l <_ A*(z) . t R*(t), and Ief(t,Z,p) : A.(z) . t R*(t) for

some positive measurable functions A,*(u), A*.(z), and AX(z).

A parameterization for the tail of Q(u), F(z), and f(x) can be motivated

by assuming the functions eQ(t,u,p) = 0, CF(tU,p) = 0, Ef(t,u,p) = 0 and

treating p and a = a(t*), a scalar given the threshold, as parameters. Sections

3-5 propose different parameter estimates for the tail exponent p and the scaling

parameter a which have not previously been considered under a unified theory.
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The paradigm for estimating the tails of Q(u), F(x), and f(z) from a random

sample is as follows:

1. From a random sample X1,... , Xn, choose, as a function of n, a thresh-

old percentile tn close to zero.

2. Estimate the corresponding threshold Tn = Q'(1 - tn).

3. Obtain parameter estimates (0, a) from the exceedences Xi - Q'(1 - tn)

for all Xi > Q'(1 - tn).

4. Estimate the tails of the quantile function, distribution function, and

density function by

(2.3.5) Q^(u) = Q'(1 - t,) + a [-g ( nU; for 1-ta<u< 1,

(2.3.6) F-(z) = 1 - tn. [g-' (-ir - Q'(1- tn)]; ]

for QN(1 - tn) < z < Q(1),

(2.3.7) f(z) = tn • (g-), (--[z - Q1 - tn)]; -)

for Q'(1 - tn) < X < Q(1).

The estimates for p and a proposed in Sections 3-5 will be shown to have

asymptotically normal distributions given Tn as ntn --+ o, where tn = 1 - F(Tn).

Therefore, the asymptotic normality of the tail estimates follows since they are

functions of asymptotically normal random variables.

THEOREM 2.3.1. Suppose that conditional on Tn, with tn = 1 - F(Tn),

[ is AN ( , (nt*) V1 1 v12

I anao v2 1 v 2 2

as ntn --+ oo for some Po $4 0, a0 > 0, and scalars vi . such that the covariance

matriz is positive definite.

(a) For 1 - t* < u < 1,

Q^(u) is AN(Tn + ao• i-g(1 - u)/t*;-o), (nt) - ' ' a 2(u))
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a flt* --+ oo, where

"+(V1 2+ V21) a 
p

(2.3.8)11 n)

"+V22[(7u) 
- 2}

(b) For Tn < x < Q(1),

F^(x) is AN( I- tn.g 1 (-(1/ao)( - Tn); -pa), (t*/n)a2,

as t - oo, where

(2.3.9)

c4z=L p~~+(- T n 2/

±X (n12 Iu1 +~a PO +X T ("Tm]'I(

+'1J2 0 1 +

(c) For Tn <zx < Q(1),

f-(X) is AN(tn*(l/aD) -(g 1 ')'(-(1/ao)(x - Tn); -po), (tx*/n). 2x)

as P - 00, where
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(2.3.10)

o (z) = _1 [1 + - - 21( 1/ po,+lj
f Po4a4 ao - n

{Ivll(z- Tn)2 [In (+OX-n +-1 PO ( 0

+(v 12 +v 2 1) p(z Tn)2 In (1 + L°(z- Tn)
\ 0 X

{(x T)Q o+1 P0)

2.4. Expected Values For Functions Of The Exceedences

In determining the properties of estimators proposed in Sections 3-5, the

expectation of certain functions of the exceedences are needed. In the quantile

domain, moments are easily found noting the relation

E X-T IX>T [O(X- T)] = j O[Q X-T I X>T (u)]du

for any function 0(.) where E X-T I X>T 10(X - T)I < 0o.

The proof of the following theorem uses this quantile expression for expec-

tation, the representation for the quantile function of the exceedences, and the

rate of convergence result for the deterministic error function.

THEOREM 2.4.1. Suppose that fQ(l-u) = uP+'L(u), where p E IR, p # 0

and
L(t ) - 1 A (u)R(t)

for some positive measurable functions A(u) and R(t) where limt_.o+ R(t) = 0.

For a given threshold value Q(0) < T < Q(1), let t ° = 1 - F(T). Further, let

a - a(t*) be the scalar value of a function a(.) satisfying a(t*)hQ(1 - t') -
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1 + O(R(t*)) for some positive measurable function R,(t) with imto+ R, (t) =

0. Also, suppose -p[Q(l) - T]hQ(1 - t*) = 1 + O(R 2(t')) for some pos-
itive measurable function R 2 (t) with limt_.o+ R 2 (t) 0 0. Finally, suppose

p T hQ(1 - t*) = 1 + O(R 3 (t*)) for some positive measurable function R3 (t)

with limtO+ R 3(t) = 0. Then

E X-T I :>T [1 + P (X - T)] '[in {1I + X- )O

f 1(1 - u) - P' [In(1 - u)-P]o du + O(R (t*)),

E X-T I X>T In 1 Q--(1 T = p + O(R;(t*)),

E X-T I X>T 1 Q(1)- - pa + O(R2(t)),

E X-T X>T [l 1 + X- T) f '+o1 R'

E X-T X>T rIn (+ X-T)f= [ In(1 - u)-Pjdu + O(R*(t*)),

where R*(t) = max{R(t),Rl(t)}, R.(t) = max{R(t),R 2 (t)}, and R (t) =

max{ R(t), R 3 (t) }.

The proof of this theorem is given in Appendix C.
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3. PARAMETER ESTIMATES FROM

THE GENERALIZED PARETO DISTRIBUTION

3.1 Method

One approach to estimating p and a is to treat the exceedences as a random

sample from a parametric model suggested from the conditional distribution of

the exceedences. The first of two possible parametric models can be motivated

as follows. From (2.3.1),

Q X-T I X>T (u; T) = a(t*)[-g(1 - u; -p) + c(t*, 1 - u,p)].

Taking a = a(t*) as a scalar given T and e(t,u,p) = 0 for all t, u, p suggests

the Generalized Pareto Distribution (GPD) modeling defined below. The GPD

model for tail estimates was first proposed by Pickands (1975).

A random variable W - GPD(p, a) with p E R, a > 0 if it has quantile

function

QGPD(U; p, a) = -a "g(1 - u; -p).

Notice that the GPD can also be naturally referred to as the Power Uniform

Distribution since it can be derived by taking the power transformation of a

Uniform(0,1) random variable.

By inverting the quantile function, the distribution function is

1 + !p<O, 0<w<-a/p

FGPD(W;p,a) = 1 - e- w / a , p = 0, w >0

1- (I+ T p>0, w>0,

and it follows that the density function is

-W , p<O0, 0< w < -a/p

fGPD(W;p,a)= le-w/, p=0, w>0
a

--(. + -/A- t, p>O, w>O.
.2 al
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To obtain parameter estimates, choose, as a function of n, a threshold per-

centile tn. Then let the threshold value be given by Tn = Q'(1 - tn). Compute

the exceedences Xi - Q-(1 - tn) = Xi - Tn for all X i > Q_(1 - tn) = Tn and

treat them as a random sample from a GPD(p, a).

3.2 Parameters Estimated By Maximum Likelihood

In other papers using the GPD to estimate tail behavior, maximum like-

lihood estimation is most popular. For example, DuMouchel (1983), Davison

(1984), R. L. Smith (1984, 1987), J. A. Smith (1986), and Joe (1987) propose

maximum likelihood to obtain the GPD parameter estimates.

Assuming the exceedences are a random sample from a GPD, the maximum

likelihood estimates of p and a are the values which maximize the log-likelihood

-[ntnI In a

[ntnl]- (P1+1) l~ + p  , E- <0a

a > -p. Y((ntn]; [ntnJ)

ZGPD(p, a; Y) = 1nt ]
-[ntn]lna-a ZYi, p=O, a>O

i=1

-[ntn] In a

- + E In 1p- > >0, a >0,

where [.] denotes the greatest integer operation and Yi = Xi - Q_(1 - tn) for all

Xi > Q_(1 - tn), with Y([ntn1;[ntni) = max{Y1,. . . ,Y[ntj]}.

3.2.1 Asymptotic Properties. The asymptotic properties of these estimators

do not follow directly from large sample maximum likelihood theory since the

exceedences are not a sample from a GPD in general. To derive these results,

first express the estimators as solutions to a set of estimating equations, take the

Taylor's series expansion, and then compute the asymptotic distribution of each

term. This approach yields the following result.
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THEOREM 3.2.1. Suppose that fQ(1 - u) = up+'L(u), where -1 < p <

oo, p $ 0 and

L(t)
L tL(tu) - 1<- A(u)R(t)

for some positive measurable functions A(u) and R(t) where limt.0+ R(t) = 0.

Let {T} be a sequence of threshold values defined on (Q(O), Q(1)) such that

ntn --+ oo and t* - 0 as n -- oo, where t* = 1 - F(Tn). Further, let a =

a(t*) be the scalar value of a function a(.) satisfying a(t*)hQ(1 - t) = 1 +

O(RI(t;)) for some positive measurable function R1(t) with limt_.O+ R1 (t) = 0.

Let (on, an) denote the maximum likelihood estimates from the GPD model for

the exceedences. Then conditional on Tn,r 1 ([p +O(R(t*))1I is ANn [tl)VPD

as nt* --* oo, where R*(t) = max{R(t),Rj(t)} and

(p + 1)2 + O(R(t*)) -a(p + 1) + O(R*(t:)) 1
VGPD = -a(p+ 1) + O(R*(tn)) 2a2 (p + 1) + O(R*(tnj)]

PROOF. Let (An, an) denote the maximum likelihood estimates derived as-

suming the exceedences over the threshold Tn are a random sample from a GPD.

Then, (On, an) is the solution to

o(frDGPD(An,an; X i - T)

0 = ([ntjl)- 1/2 Z p

t= ) CG pD(O,,an;x, - T)
o~a

Take the first order Taylor's series expansion about the true parameter values

(p, a) of the right hand side to obtain, for some point (p, a*) on the line segment

between (An,ain) and (p,a),

aCGPD(p,a; X, - Tn)
[nt.] -50p

0 = ([ntj l-/ E
=1 aZ£GpD(p,a; Xi - Tn)

Oa
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+ ([ntsnjf'

a2 CGPD (p*,a; Xi - Tn) a2 CGPD(P, a;X - Tft)
Int.*]Ip apaa

1= 8CGPD (P*,a; Xi - Tn) a ZGPD(P,a; Xi - Tn)
apaa aa2

IAn-ai

From the Central Limit Theorem for an iid sequence,

OCGPD(P, a; Xi - Tn)

([t~)12F, aJ is AN(pUn,([ntn~lf 1 IJn)

i=1 aCGPD(p, a; Xi - Tn)

as ntn* -- 00, where

aBCGPD(P,'a; Xi Tn)

a r O(R*(tn))1
An= E X-T. I X>, aGPD(p,a;X - T) I O(R(t)) J

aa

and

En= Coy X-Tn X>T

aZGPD(p, a; Xi - Tn) O9CZGPD (p, a; Xi - Tn)
ap 4ap

a8CGPD(p, a; X, - Tn) aLGPD(p, a; X, - Tn)

aa aa

21

a(p + 1) (2p+ 1) + O(R*(tn*)) a 21(2p + 1) + O(R(tn)
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This result follows from the expression of the gradient vector for the GPD log-

likelihood which is given in Appendix D and the moments given in Theorem

2.4.1.

For n sufficiently large to make the O(R*(t*)) terms negligible, notice that

En is positive definite if and only if p > - 1. The case p < - is treated in detail

by Smith (1987), but the important change is that the asymptotic distribution

of the GPD maximum likelihood estimates is no longer normal, nor is the rate

ii En is positive definite, then from the Weak Law of Large Numbers and

the fact that (p*,a*) 2.. (p,a) as nt* -* oo, it follows that

a 2 eGPD(p * , a*; X i - Tn) 82 CGPD(P*,a*; X i - T

E n ([nt-l)-'
i a 2 (Ppn(p*,a*;X - Tn) OCGPD(pa;Xi - Tn)

apaa aa2

as ntn --. oo. This result follows from the expression of the Hessian matrix for

the GPD log-likelihood which is given in Appendix D and the moments given in

Theorem 2.4.1.

The asymptotic distribution of (An, an) then follows from Slutsky's Theorem,

observing that VGPD = En-1 C3

3.2.2 Computational Aspects of GPD Maximum Likelihood Estimation. This

subsection contains a detailed investigation into the problem of maximizing the

GPD log-likelihood over the parameter space.

Suppose that Y 1 ,..., Yk is a random sample from the GPD with largest value



23

Y (k; k). The log-likelihood is given by

a > -po.Y(k; k)
k

GPD(Pa;Y) = -klnai- -1 y, p =0, a >0

a

i=1

If p < -1, there is no maximum likelihood estimate since for any p < -1,
lrn -Y(k;k)+ CGPD(P, a; Y) = ok. In order to obtain a finite maximum of the

GPD log-likelihood, the constraint p> -1 must be imposed.

There are (in most instances) three values of (p, a) which are candidates for
the GPD maximum likelihood estimator. The first of these involves the boundary

value p = -1 due to the above constraint on the domain of CGPD('). Given

p = -1, the GPD log-likelihood is maximized at a = Y(k; k). This follows since

£GPD(P = -1,a;Y) = -klna is maximized as a -p -p. Y(k;k) + = Y(k;k) + .

The problem is complicated by the optimization being taken over an open set,

but it is treated as a maximum taken over a closed set. Any relative maxima

found over the domain of £GPD(') must exceed the GPD log-likelihood evaluated

at this boundary in order to be the maximum likelihood estimator.

Figure 2 shows a graph of the GPD log-likelihood function (with a slight

modification to permit its definition on the grid required for the graphing rou-

tine) for a generated random sample from the GPD. Clearly, there exist relative

maxima and minima on the domain of £GPD(p, a; Y) whose values are found by

applying the principles of calculus.

Consider the space defined by A = {-1 <p <0, a > -p. Y(k;k)} U {p >

0, a > 0}. For some (0, a) E A, the gradient vector is equal to zero. Using the

expression for the gradient vector of the GPD log-likelihood given in Appendix
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FIG. 2. Graph of the GPD log-likelihood function for a generated random sam-
ple. The function has been slightly modified to permit its definition on the grid
required for the graphing routine. Notice that there exist relative maxima and
minima, implying multiple roots of the gradient vector over the two-dimensional
parameter space.

D, the solution to the simultaneous equations may be simplified and written as

aOGPD (p, a; Y) 0

aLGPD (p, a; Y) J
kk(, + 1) In +, (, +

kk

k= ((++)Z 1+
k=-
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= 'in (1+ .

The bivariate search for the zeroes of the gradient vector over A can be

reduced to a univariate search since the second equation is a closed form rep-

resentation for the estimator of p given the ratio /a, and the first equation

depends only on O/a. Therefore, the -!eroes of the gradient of the log-likelihood

of the GPD are the solution(s) to h(/3/a) = 0, where the function h(-) is defined

by
I 

k

h(= 1+ ln(+ qY) (1- 1  1,

with domain {Yl > -1/Y(k;k), 0) #.

An example of the function h(t7) is given in Figure 3 for the random sample

from the GPD used in Figure 2. Notice that there are two roots of h(.) in this

example, only one of which corresponds to the local maximum. It is easily shown

that h(-) is continuous at zero since lim,;--.O h(j7) = 0.

A more important consequence of this limit is that t1 - 0 gives the second

possible value for the GPD maximum likelihood estimate. The limit 77 -* 0

corresponds to the case p = 0, where £GPD(') is only a function of a. The

extremum A 0, a = 1/Y, where Y = k-1 Yi1 , follows from solving

£CGpD(p = 0,a;Y) = 1 k k=a .;2 Y -- a = 0
i=1

which is a local maximum if

82 GpD(A = 0,a;Y) k 2 k

6a2  a2  i=i

The third possible value for the maximum likelihood estimate which exists in

most cases must be found numerically. Subsection 3.2.3 describes an algorithm

which determines if such a root exists and, assuming it does exist, finds it using
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-7. 1 . .4

FIG. 3. Graph of the function h(q) used to simplify the search for the zeroes of
the gradient vector on the two-dimensional parameter apace for a GPD random
sample. Notice that there are two zeroes of the function, only one of which
corresponds to the local maximum.

the bisection root finding algorithm. If such a root is found, the third possible

value for the GPD maximum likelihood estimate can be computed from

k
=A l n(1 + ,j1 )

i=1

a

This relative extremum must be verified to be a local maximum by consid-

ering the Hessian matrix of the GPD log-likelihood given in Appendix D. The

point (0, t) is a local maximum if the Hessian matrix evaluated at the estimators

is negative definite.

3.2.3 Proposed Algorithm For The GPD Maximum Likelihood Estimator.

Hosking and Wallis (1987) attempted to find the GPD maximum likelihood es-

timator using Newton-Raphson optimization in two dimensions and found that

their algorithm failed to converge to a local maximum with alarming frequency.

The table of failures to converge given by Hosking and Wallis (1987) is repro-

duced in Table 2.
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TABLE 2
Failure rate of the Newton-Raphson optimization in two dimensions of the log-
likelihood of the GPD, reproduced from Hosking and Wallis (1987). Tabulated
values are the number of failures to converge of Newton-Raphson per 100 simu-
lated samplea. The GPD log-likelihood ha. a mazimum, but this algorithm fails
far too frequently to be considered reliable in practice.

p = -. 4 p = -. 2 p = 0 p = .2 p = .4

n = 15 41.7 22.7 12.2 4.8 3.6
n = 25 14.6 4.7 1.5 .3 .2

The observed failure to converge of the Newton-Raphson algorithm has two

explanations. First, the root of the gradient vector for the GPD log-likeiihood

may not satisfy the second order conditions to be a local maximum. The GPD

log-likelihood often has two zeroes of the gradient vector, so the root obtained

by the Newton-Raphson algorithm using a particular initial value may not be

the local maximum.

Second, in terms of the parameters (p, a), the root of the gradient vector

corresponding to , --+ 0 is p = 0. However, it is interesting to note that a

numerical optimization routine in two dimensions may increase a at each iteration

in an attempt to find the zero of the gradient vector. Such behavior is due to

the reparameterization q = p/a, where q can be made arbitrarily close to zero

by letting a --+ co. Therefore, the gradient vector may always be made closer to

zero with a larger value of a. The Newton-Raphson algorithm in two dimensions

can continually increase a until reaching an upper bound for the iterations which

then signals that the algorithm failed to converge.

An algorithm which computes each of the three possible values for the GPD

maximum likelihood estimator discussed in Subsection 3.2.2 and then selects the

maxima of the GPD log-likelihood is given by:

* Choose a 6 such that for 1 < 6, it will be considered that j7 = 0 and there

is a lone solution to h(q) = 0. For example, let 6 = .0001.

* Choose an e to be used as a convergence criterion such that for Ih() I < ,

it will be considered that j7 satisfies h(j) = 0. For example, let f = .0001.
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* Compute h(-6) and h(6).

* If h(-6) < 0, then:

1. Let 17(L) = [-1/Y(k;k)]. [i/(i + 1)] for the smallest i E {1,2,...,M}

such that h(ri(L)) > 0, where M is a specified bound on the number of

iterations. If there is no t1(L) such that h(17(L)) > 0, then a nonzero root

cannot be found numerically.

2. Let 7(U) = -6.

3. Use the bisection algorithm to find j such that Ih(j)l < e.

* If h(b) > 0, then:

1. Let 1 (L) _ 6.

2. Let ,7(U) _ i for the smallest i E {1,2,... ,M} such that h( 7 (U)) < 0,

where M is a specified bound on the number of iterations. If there is

no n(U) such that h(q(U)) < 0, then a nonzero root cannot be found

numerically.

3. Use the bisection algorithm to find j such that Ih(j) I < .

o If a nonzero j is found such that Ih(i) 1 < e, then:

1. Compute Al - (I/k) Efi In(1 + jYi) and a, = A15/.

2. Compute the Hessian at (1, a).

3. If the Hessian at (01,al1) is negative definite, then (01 ,al) is a local

maximum of the GPD log-likelihood.

" If Y > 1/v/", then P2 = 0 and a2 = 1/Y is also a local maximum of the

GPD log-likelihood.

" The relative maximum is (A,, aL) if CGPD(P1,al;Y) > CGPD(A2,a2;Y).

Otherwise, the relative maximum is (02, a2).

* If £GPD(o, a; Y) > -k ln Y(k; k) where (0, a) denote the relative maximum,

then A and a are the GPD maximum likelihood estimates. Otherwise, the

boundary maxima 0 - -1 and a = Y(k; k) are the GPD maximum likelihood

estimates.

It should be noted that the bisection algorithm is preferred for the numerical

root finding because it ensures that the nonzero root will be found if it exists.
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The bisection algorithm assumes two values 17(L) and q(U) are given such that

h(,(L)) • h(q7(U)) < 0, and a convergence criterion e (which was defined earlier)

is specified. Given these values, the bisection algorithm is defined as:

" Compute 4 = (pI(L) +,r(U))/2.

" If Ih(r ) _< e then terminate the algorithm, returning i4.

* If Ih(,)1 > e then

1. If h() ), h(r/(L)) < 0 then set -/{) = j and repeat the algorithm.

2. If h(4l) • h((U)) < 0 then set r7(L) = j and repeat the algorithm.

Typically, the bisection algorithm is criticized for its slow rate of convergence.

However, in the application of this algorithm in simulation studies, the nonzero

root of h(-) is most often found in five to ten iterations.

3.3 Parameters Estimated From The Sample Quantile Process

Other parameter estimates can be obtained by applying the theory of regres-

sion analysis on continuous-parameter time series from the reproducing kernel

Hilbert space (RKHS) point of view given by Parzen (1961a,b, 1967) applied to

the sample quantile process Q'(u). This approach follows the ideas in Parzen

(1979) for estimating location and scale parameters.

Parzen (1979) motivates this approach by first stating the following theorem

on the strong approximation of the quantile process.

THEOREM [Cs6rg6 and Rvisz (1978)]. Let {Q-(u), 0 < u < 1} denote the

sample quantile process of a random sample from a population with continuous

distribution function Fo(z), quantile function Qo(u), density function fo(z), and

denaity-quantile function f0Q0(I - u) = uP+lL(u) for p E R and L(u) slowly

varying as u - 0+. Let {Qu'(u), 0 < u < 1) denote the quantile process of the

uniformly distributed random variables U = F(Xi). Let

Pn= sup , fn ifoQo(u){Qi(u) - Qo(u)} - {9Qu(u) - u}I.
O<u<I
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Then almost surely,

O(n-1/2lnlnn), if p < 0

Rn= O(n-1/2 (lnlnn)2 ), if p = 0

O(n-1/ 2 (ln In n)P+(In n)P(l+e)), if p > 0

for every e > 0.

Therefore, f0Q0(u){Q_(u) - Qo(u)} can be approximated by the uniform

sample quantile process {Qu'(u), 0 < u < 1' whose weak convergence is con-

sidered in the following theorem. Define a Brownian bridge to be a zero mean

normal process with covariance kernel KB(s,t) = min{s,t} - st, 0 < s, t < 1.

THEOREM [Cs6rg6 and Rav~sz (1975)]. A Brownian bridge {Bn(u), 0 <

u < 1} can be defined for each n such that, almost surely,

sup IV'n{QU-(u) - u} - Bn(U)= (n-1/2 Inn).

These two theorems are then interpreted for purposes of statistical inference

to mean that V#foQo(u)[Q'(u) - Q0(u)] is distributed as a Brownian bridge

B(u).

The GPD model for exceedences of a threshold assumes that for given tn,

Q X-T, I X>Q(l-t,)=T (U; tn, Tn) = -a . g(1 - u; -p)

with

fQ X-T, I X>Q(-t,)=T, (U; tn, Tn) (1 u)p+
a

The sample quantile process for the exceedences for given tn is

QX-T. I X>Q-(I-t,)=T,, (U;tn,Tn) = Q_(1 - tn(I - u)) - Q_(1 - tn).

Therefore, estimating p and a becomes a problem in regression analysis of

continuous-parameter time series by writing

(I - u)P+=[Q(1 - -n(1 - u)) -; Q-( - tn)]
= a(I - u)P+19(1 - u; -P) + aBB(u)
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where aB = a/ V/Fnn] is treated as a free parameter not constrained to be related

to a.

Estimators can be formed from this time series regression analysis after a

reproducing kernel inner product is found corresponding to the Brownian bridge

covariance kernel KB(S,t). This RKHS consists of L2 differentiable functions

f, g on the interval p ! u < q with inner product

(f,g)p,q =- f'(u)g'(u)du + 1 f(p)g(p) + f(q)g(q).
fP ~ Pq

Parzen (1979) proves the reproducing formula (f, KB( ) t)P = f(t) for p < t <

q which verifies (f, g)p,q is "he reproducing kernel inner product.

Applying the ideas of :.iodeling the quantile process as a continuous param-

eter time series, Parzen (1979) derives optimal estimates (along with the corre-

sponding influence functions) for location and scale parameters. This approach

does not meet with the same success in the GPD modeling for tail estimates

since the quantile process is expressed as a nonlinear function of the parameters.

However, given p the model is a linear function in a.

Drawing from the applications paradigm of the Box-Cox (1964) transforma-

tion in regression, estimates of (p, a) are found by:

1. Choose a reasonable range of values for p.

2. For each value p('), compute

a()
P,q

((1 - u)P+lg(1 - u; -p), (1 - u)P+l[Q"(1 - t,(1 - u)) - Q(1 -tn)]I)pq

-(1 - u)P+ 1g(1 -_ U; -p), (1 - u)P+lg(1 - u; -p)p,q

and compute the value of a specified loss function R(p(), a.(')
3. Choose the estimate of (p, a) which minimizes R(.).
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4. PARAMETER ESTIMATES FROM

THE GENERALIZED EXTREME VALUE DISTRIBUTION

4.1 Method

A second parametric model for the conditional distribution of the excee-

dences can be motivated as follows. From (2.3.1),

Q X-TI X>T (u; T) -a(t*)[-g(1 - u; -p) + c(t*, 1 - u,p)].

Taking a - a(t*) as a scalar given T, e(t,u,p) = 0 for all t, u, p, and noticing

that as u -- -, g(- In u; -p) - g(1 - u; -p) suggests the Generalized Extreme

Value Distribution (GEV) defined below. The GEV probability model is used ex-

tensively in practical applications involving floods and extreme sea levels where

the random variable is the maximum value over a given time period. Jenkin-

son (1955), the Flood Studies Report [Natural Environment Research Council

(NERC) (1975)1, and Blackman and Graff (1978) give examples of GEV appli-

cations.

In this work, it is important to point out that the GEV is used as a model for

the exceedences. This alters both the application of the model and the properties

of the estimates from the usual scenarios where the entire sample is modeled as

GEV.

A random variable W - GEV(p, a) with p E IR, a > 0 if it has quLntile

function

QGEV(u; p, a) = -a . g(- ln u; -p).

The name Generalized Extreme Value distribution follows from its unifying

representation of the three types of extreme value distributions derived by Fisher

and Tippett (1928). However, the GEV can also be naturally referred to as

the Power Exponential Distribution since it can be derived by taking the power

transformation of an Exponential(I) random variable.
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By inverting the quantile function, the distribution function is

ep 1,p<0, 0<w< -a/p

FGEV(w;p,a)- exp(-e-w/a}, p p=O, w >0

exp (I + , Yp>O, w>O,

and it follows that the density function is

1 a

fGEV(w;p,a) a exp(-e-w/a), 
p = 0, w > 0

a (1 + ._)

• exp( + -- -)-/P P W O- , p>0, w >0.

To obtain tail estimates, choose, as a function of n, a threshold percentile

tn. Then let the threshold value be given by Tn = Q-(1 - tn). Compute the

exceedences Xi - Tn = X i - Q-(1 - tn) for all Xi > Tn = Q-(1 - tn) and treat

them as a random sample from a GEV(p, a).

4.2 Parameters Estimated By Maximum Likelihood

Assuming the exceedences are a random sample from a GEV distribution,

the maximum likelihood estimates of p and a are the values which maximize the
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log-likelihood

-[nt,,] Ina

Intnl

i=1
-[ntrF InIn - Y

a.
£GEV(p, a; Y) = S=1

Int.]
>-p = O, a >

i=1

- [ntnj In a

[nt,lj

-1+ , p> Oa> O ,
i=1

where [.] denotes the greatest integer operation and Y = X - Q(1 - t,) for all

Xi > Q(1 - t), with Y([ntnl;[ntnJ) = max{Y1 ,. ..- Y[ntn}.

Maximum likelihood estimation for the GEV is often criticized because it

must be performed numerically. However, Hosking (1985) provides an algorithm

for finding the GEV maximum likelihood estimates for a random sample based

on Newton-Raphson iteration with some modifications designed to improve the

rate of convergence. This algorithm performs well for jpj < 2 and nt, > 15.

The large sample properties of these estimators do not follow from directly

from large sample maximum likelihood theory since the exceedences are not a

sample from a GEV distribution in general. To derive the asymptotic results,

first express the estimators as solutions to a set of estimating equations, take the



35

Taylor's series expansion, and then compute the asymptotic distribution of each

term. This approach yields the following result.

THEOREM 4.2.1. Suppose that fQ(1 - u) = u0+1L(u), where po < p <

1, p 0 0, where p0 is the only real root of h(po) on the interval (-1, 1) where

(4.2.1) h(p) =24p 17 - 46p16 - 345p15 + 520p14 + 1715p13

- 1490p1 2 - 3877p 11 + 584p1 ° + 5729p9 - 6428p8

- 7150p7 + 24532pP - 2184p5 - 2672P4 - 7072p3

- 8512p2 - 4 2 2 4p - 768.

Approximately, Po ; -. 356967. Also, suppose

L(t) 1_

L(tu) 15 A(u)R(t)

for some positive measurable functions A(u) and R(t) where limt_.o+ R(t) = 0.

Let (Tn) be a sequence of thresholds defined on (Q(O),Q(1)) such that nt* -- 00

and t4 -+ 0 as n -- oo, where tn = 1 - F(T.). Further, let a = a(t*) be the

scalar value of a function a(.) satisfying a(t*)hQ(1-tn) = 1+O(Rl(t)) for some

positive measurable function R 1 (t) with limt..o+ RI(t) = 0. Let (An, an) denote

the maximum likelihood estimates from the GEV model for the exceedences. Then

conditional on Tn,
; P- 4

p~n 4- p - 2) + 0(R*(tn*))
is AN , ([nt l)-'VGEv

LanJ 1
2a(p + 2) + O(R(t)

as ntn, -. oo, where R (t) = max{R(t),R1(t)} and

VGEV = I [v1 v12]

with h(p) given in (4.2.1) and

vii =4p4 (p - 2)4(p - 1) 3 (P + 1)2 (p + 2) 3 (2p + 1)(3p 2 + 4p + 2) + O(R*(t'),
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V22 =2a2 p2 (p - 2)(p + 1)(p + 2) 3 (2p + 1)

* (8p11 - 50p 10 + 81p 9 + 63p8 - 374p7 + 668p6

- 623p5 + 203p4 - 16p 3 - 32p2 + 96p + 48) + O(R*(t*)),

V12 =V21

=4ap5 (p - 2)2(p - 1)3 (p + 1)(p + 2) 2 (2p + 1)

. (p4 + 6p3 - 21p 2 - 48p + 16) + O(R*(tJ)).

PROOF. Let (On, a) denote the maximum likelihood estimates derived as-

suming the exceedences over the threshold Tn are a random sample from a GEV

distribution. Then, (On, ttn) is the solution to

8tZ GEV(An, an; X - Tn)
0 = ([nt~nl)-1/2 Ea

i=1 a GEv(Ont,a.; x - Tn)
a

Take the first order Taylor's series expansion about the true parameter values

(p, a) of the right hand side to obtain, for some point (p, a*) on the line segment

between (AP, an) and (p, a),

G4GEv(p,a; Xi - T")

0 = ([t'])-/2 Z
1=1 aZGEv(p,a; Xi - Tn)

Oa

+([ntn,]) - '

12 .GEV(p*,a*;Xi - Tn) a2 eGEV(p,a*;X, - Tn)
[ntjs] ap2  8pca

i= 2 CGEV(P,a*;Xi- Tn) a 2 eGEV(P*,a*;X, - Tn)
Opaa i3a2
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1 atn a]j

From the Central Limit Theorem for an id sequence,

fnt.' [ aZCGEV (p, a; X - T")

([ntn]-/ 2 E is AN(/,n, (ntn])-E,)
=1 aI GEV(pa; X - T,)

49a]

as nt* --. oo, where

-ZGEV(P, a; Xi - T")
ap

/A= E X-T I X>T.
OCfGEV(P, a; X - T.)

4p-42+ (~tj

2 a(p + 2) + O(R*(tn))

and

E= Cov X-T. X>Tn

a -CGEV(p,a; Xi - Tn) aZGEV(p, a; X i - Tn)

ap ap

OIZGEV(p,a;X - Tn) 8aGEV(p,a;Xi - T.)

aa aa

[all o'12],

'21 022

with

a 1 1'11 = 4p4(p -2) 3 (p -1) 3 (p +1)(p +2)( 2p +l)]
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(8p11 - 50p10 + 81p9 + 63p8 - 374p 7 + 668p6

-623ps + 203p4 - 16p3 - 32p 2 + 96p + 48) + O(R*(tn)),

3p 2 + 4p + 222 2a 2 p 2(p + 2)(2p+1) +O (tfl))

012 =021

(p4 + 6p3 _- 21p 2 - 48p + 16)
2ap(p - 2)2 (p + 1)(p + 2)2(2p + 1) + O(Rn(t)).

This result follows from the expression of the gradient vector for the GEV log-

likelihood which is given in Appendix E and the moments given in Theorem

2.4.1.

For n sufficiently large to make the O(R*(tn)) terms negligible, notice that

E, is positive definite if and only if P0 < p < 1, where p0 is the only real

root of h(po) on the interval (-1, 1) for h(p) given in (4.2.1). Approximately,

P0 ft -. 356967.

If En is positive definite, then from the Weak Law of Large Numbers and

the fact that (p*, a*) 2-, (p, a) as nt* --+ o, it follows that

a2 eGE(P*,a*;Xi - T) a2 eGE(p*,a*;X - Tn)
[nt, 1p 2  8pCa

F- . ([ntn*])-I
i=1 92 CGEV(P*,a*;Xi - Tn) 82 CGEV(p*,a*;X i - Tn)

apaa aa2

as ntn --+ oo. This result follows from the expression of the Hessian matrix for

the GEV log-likelihood which is given in Appendix E and the moments given in

Theorem 2.4.1.

The asymptotic distribution of (On, an) then follows from Slutsky's Theorem,

observing that VGEV -E 1. 0



39

4.3 Parameters Estimated From The Sample Quantile Process

Other parameter estimates can be obtained by applying the theory of regres-

sion analysis on continuous-parameter time series from the reproducing kernel

Hilbert space (RKHS) point of view to the sample quantile process Q'(u). The

justification for this approach was given in Subsection 3.3, but the main con-

sequence to statistical inference is that for a random sample from a population

with quantile function Qo(u) and density-quantile function foQo(u),

v'ifoQo(u)[Q-(u) - Qo(u)J - B(u)

where B(u) is a Brownian bridge.

The GEV model for exceedences of a threshold assumes that for given tn,

Q X-T I X>Q(-tn)=T (u; tn, Tn) = -a. g(- In u; -p)

with
fQ X-T,, X>Q'(1-t.)=T (u;tT T,) - u(-ln U)P+l

a

The sample quantile process for the exceedences for given tn is

Q-X-Tn 1 X>Q-(1-t,)=Tn (u;tn,Tn) = Q_(1 - t,(1 - u)) - Q_(1 - tn).

Therefore, estimating p and a becomes a problem in regression analysis of

continuous-parameter time series by writing

u(- In u)P+'[Q-(1 - tn(1 - U)) - Q_(1 - tn)]

= a u(- In u)P+'g(- In u; -p) + oBB(u)

where oB = a/ V/[Witi is treated as a free parameter not constrained to be related

to a.

Estimators can be formed from this time series regression using the repro-

ducing kernel inner product corresponding to the Brownian bridge covariance

kernel KB(a, t). This RKHS consists of L 2 differentiable functions f, g on the

interval p 5 u < q with inner product

(f,g)p,q = f'(u)g'(u)du + f (q)g(q).
fPp
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Since this model is not linear in the parameters, no closed form expressions

exist for the estimators. However, drawing from the applications paradigm of

the Box-Cox (1964) transformation in regression, estimates of (p, a) are found

from Q-(.) by:

1. Choose a reasonable range of values for p.

2. For each value of p(i) the model is linear in a, so compute

- WI

(u(-In u)P+g(- In u; -p), u(-In u)P+ [Q'(1 - tn(1 - U)) - Q(1 - tn))p,q

(u(- In u)P+lg( - In u; -p), u(- In u)P+lg( - In u; -P))p,

and compute the value of a specified loss function R(p('), a().

3. Choose the estimate of (p, a) which minimizes R(-).
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5. PARAMETER ESTIMATES FROM MODELS BASED ON

REGULARLY VARYING EXPRESSIONS FOR THE TAILS

5.1 Parametric Modeling For The Tail

A third approach to formulating tail estimates is to derive parametric models

for the tails of the quantile function, distribution function, and density function

from fQ(1 - u) = uP+'L(u). Assuming these models hold beyond a given thresh-

old, parameter estimates are derived from the largest order statistics.

The results of the following theorem motivate the probability models for the

tails.

THEOREM 5.1.1. Suppose that fQ(1 - u) = uP+lL(u), where p E R and

L(u) is slowly varying as u -* 0+ . Then

(a) the quantile function can be represented as

(i) Q(1 - u) - Q(1) + u-P .-L(u) as u --* 0+ for p < 0;

(ii) Q(1 - u) - u-p. Ls(u) as u --+ 0+ for p > 0;

(b) the distribution function can be represented as

(i) F[Q(l) - x] - 1- : - L*(z) as z -- 0+ for p < 0 assuming

L(u[-pL(u)]'/P)/L(u) -* 1 locally uniformly in p < 0 as u -- 0+

(ii) F(z) - 1 - z - 1/P. L(z) as z --+ oo for p > 0 assuming

L(u)/L(u[pL(u)J1/P) --, 1 locally uniformly in p > 0 as u - 0+ ;

(c) the density function can be represented as

(i) f[Q(1) - x) - (-l/p)x-(/P)- 1 . L,(z) as z -+ 0+ for p < 0 assuming

L(u[-pL(u)]t/P)/L(u) -+ 1 locally uniformly in p < 0 as u --+ 0+ and f

is ultimately monotone;

(ii) f(z) - (1/p)z - (l/P)- 1 L2(z) as z -+ oo for p > 0 assuming

L(u)/L(u(pL(u)J1 /P) -- 1 locally uniformly in p > 0 as u -. 0+ and

f is ultimately monotone;

where L (u) = 1/(pL(u)], which is slowly varying as u --+ 0+, LI(z) =

[-pL(z-1/P)] - lIP, which is slowly varying as z --+ 0+ , and L2(X) =
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[pL(z-/P)]- l i p which is slowly varying as x --+ 00.

Tables 3-5 contain, respectively, examples of the quantile function, distri-

bution function, and density function for some common parametric probability

models detived from the tail behavior model and expressed in the form given in

Theorem 5.1.1.

Taking L(u) = 1/A, A > 0 for u > t for some threshold percentile t suggests

the tail parameterizations

( Q(1) - (1 - u) - p (A/(-p)), p < 0
=( (- ,)-)P. A/p, p > o

{ 1- [Q(1) - z] - 1/P. (-p/A)-l/P, p < 0
F1 - x'- p . (p/A) - /P ,  P > 0

{ (-1/p)[Q(1) - z - ( I /p)- I 
. (-p/A)-lIP, p < 0

(lPz( / ) I " (p/A) - l/p, p > 0

Notice that this parameterization requires that the class of tail behavior is

known. Each case will be treated separately in the following subsections.

Note that determining the class of tail behavior for the underlying distribu-

tion is equivalent to determining the domain of attraction of the extreme value

distribution since

(i) p < 0 *4 Domain of Attraction is the Type III Extreme Value Distribution;

(ii) p > 0 4* Domain of Attraction is the Type II Extreme Value Distribution.

Therefore, one method for determining the class of tail behavior is to evaluate

the probability modeling assumptions and determine the domain of attraction.

A diagnostic derived from the sample which can be used to determine the

class of tail behavior is the Identification Quantile (IQ) Boz Plot defined by

Parzen (1983). For an arbitrary random variable Y, define the identification

quaantile standardized random variable ZQI = (Y - Q(.5))/o, where Q(.5) is the

median and a = 2[Q(.75) -Q(.25)1 is the quartile deviation. Appendix A contains
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TABLE 3

Quantile functions of common parametric probability models expressed in the
representation given in Theorem 5.1.1(a) based on the tail behavior model
fQ(1 - u) = uP+'L(u).

Distribution Quantile Function

Uniform Q(1 - u) =.5 - u

=Q(1) +u .(-1)

Neg. Exponential Q(1 - u) = [ln2/(2In 3)] + [In(1 - u)/(2 In 3)]

-Q(1)+u.(-1/(2In3))[l+.5u] asu-0 +

Neg. Weibull(p) Q(1 -u) = ([ln21/P/v) - ([-In(1 - u)l'/P/c)

- Q(1) + ul/p. (-1/)[1 +.5(3 - p- 1 )ul
as u -- 0+

Cauchy Q(1 - u) = 1 tan r( - u)

- u- 1 (1/47')[I - (w2 /3)u 2 ] as u - 0+

Pareto(p) Q(1 - u) = u-1/P. (1/o)[1 - 21/Pul/P]

Frechet(p) Q(1 - u) = Q- In(1 - u)]-'/P/a) - ([in 211/P/a)

Su-1/p. (1/)[1 + .5( + p-1)uj as u -0 +

Note: See Appendix A for the definition of o, a different scale constant for each
different distribution.
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TABLE 4

Distribution functions of common parametric probability models expressed in the
representation given in Theorem 5.1.1(b) based on the tail behavior model fQ(1 -

u) = uP+IL(u).

Distribution Distribution Function

Uniform F(Q(1) - x) = 1 - x. I(0 < z < 1)

(1, z<O

Neg. Exponential F(Q(1) - z) = e(2 1n3)z, z > 0

-l-.(21n3)[1-(ln3)] asx-0 +

1, z <0
Neg. Weibull(p) F(Q(1) - z) { I >O

.1 - zP.OP[1+.5(1-3p)xP]

as z - 0+

Cauchy F(x) - .5 + (1/7r) tan- 4x

1 - z- 1 (1/4r)[1 - (1/48)z - 21 as z -- oo

Pareto(p) F(x) 0 x < [1 - 21/PuG

1 1- [21/P + ox]- P, x> [1 -21/Pl/a

1 - X-P a-P[1 - (p21/P/o)z- 1]

as z -x oo

0,

X < -(ln2)-l/P/a
Frchet(p) F(x) -exp=-I(n 2)- /P + ax)-P),

I { 1 ) > -(ln2)-/P/a

- 1- -P.-P[1-.5(I+3p)x-P] asz-*o

Note: See Appendix A for the definition of a, a different scale constant for each
different distribution.
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TABLE 5
Probability density functions of common parametric probability models expressed
in the representation given in Theorem 5.1.1(c) based on the tail behavior model
fQ(1 - u) = uP+IL(u).

Distribution Density Function

Uniform f(Q(i) - X) = z 0 . 1(0 < z < 1)

Neg. Exponential f(Q(1) - z) = {(2 onh3)e-(2r3)wi

10, otherwise
-X()- . (21n3)[1 -(2In3)x] asxz-O 0

Neg. Weibull(p) f (Q(1) - X) = Ippz- le-(DQ z)P,

10, otherwise

pXPl " crP[1 + .5(1 - 3p)xP]

as z -- 0+

Cauchy f(x) = (4/r) 1/(1 + 16z 2)

z - 2 - (1/47r)[1 - (1/16)z - 2] as z - oo

Pareto(p) fX) 0 X < (1 - 21/P)/a

I f p[21/P + az]- P- ', z > (1 - 21/P)/o

p p .o-p[l - (21/P(p + l)x - I ]

as x '- o

0,

X < - (In 2) -/P/cr

Fr6chet(p) f(z) = ap[(In2) - I /P + azj-P- 1 I

•exp{-[(In 2) - 1/P + z]-P},

X > -(In 2)- I/P/a

~ p -- 1 o-aP[I + .5(1 + 3p)x-P] as x -p oo

Note: See Appendix A for the definition of a, a different scale constant for each
different distribution.
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many common parametric models expressed in the identification standardized

version.

The standardized ZQI has identification quantile function QI(u) = (Q(u) -

Q(.5))/a. At u = .5, QI(u) is equal to zero and has slope approximately one.

This apprcoxmately tangent line is a basis for comparing the tail behavior of

different distributions as u -- 0+ or u --- 1-. Figure 4 shows an overlay of the

identification quantile functions for the Uniform distribution (p < 0), Normal

distribution, and Cauchy distribution (p > 0), each of which is discussed in

Appendix A. Notice from the figure that the three types of tail behavior are

clearly differentiated as u - 1-.

Idtntificatif quantil, Function

A Nhowal 4

-.42

-.4
-.6

- ". .2 '.3 '.4 '.5 '.6 .,7 '.1 .9

FIG. 4. Identification Quantile Plots for the Uniform (p < 0), Normal, and
Cauchy (p > 0) Distributions clearly differentiating the types of tail behavior.

Therefore, a useful diagnostic for tail behavior is an estimate of the identi-

fication quantile function. Let

Q(u) - Q-(.5)

QF(u) = 2(Q-(.75) - Q-(.25))'

and display this function graphically in the IQ box plot. The IQ box plot is a

graph of QlF(u) for 0 < u < 1 with informative overlays to help in using the plot

as a diagnostic for classifying tail behavior.

The first of these overlays is used to indicate short tail behavior or equiva-

lently p < 0. From the plots of the quantile functions of short tailed distributions
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given in Appendix A, it is seen that, as a group, these quantile functions hardly

deviate from the approximately tangent line at u = .5 with intercept zero and

slope one (which is the identification quantile function of the Uniform distribu-

tion). Drawing this tangent line in the IQ box plot permits a visual diagnostic

of short tail behavior.

Notice that the identification quantile of the Normal distribution drawn in

Figure 4 is nearly equal to one at u = 1. It is useful to truncate the plots on

-1 < Q/F(t) < 1 to allow comparison to the Normal since it is an important

special case in the family of parametric models and assumptions of normality are

often made.

Long tail behavior or equivalently p > 0 is indicated when the sample iden-

tification quantile function exceeds the truncation line for values of u less than

one.

5.2 Estimation Assuming The Class Of Tail Behavior Is Short Tailed

To obtain tail estimates when the tail behavior is known to be short tailed,

choose, as a function of n, a threshold percentile tn. Then let the threshold value

be given by Tn = Q'(1 - tn). Parameter estimates are obtained by assuming that

the underlying distribution satisfies

(5.2.1) Q(u) = Q(1) - (1 - u) - P. (A/(-p)) for tn <u < 1

(5.2.2) F(z) = 1 - [Q(1) - z]- l 1P. (-p/A) - 1/P for Q-(1 - tn) < z <_ Q(1)

(5.2.3) f(x) = (-1/p)[Q(1) - z - ( '1 P) - ' . (-p/A) - I / P

for Q'(I - tn) < z < Q()

where p < 0, Q(1) E JR, and A > 0 are unknown parameter values.

Hall (1982) derives parameter estimates based on the largest order statistics.

Stated in terms of the exceedence over threshold approach, the [ntn] + 1 largest

order statistics are given by

Q'(1 - tn) = Tn = X(n - [ntnjl;n) < X(n - [ntn] + 1;n) <... < X(n;n).

If the underlying distribution satisfies (5.2.1-5.2.3), the log-likelihood of the
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[nt,] + 1 largest order statistics is given by

LST(P, Q(1), A; X)
nt

= In-_(n -1"n-1- 1)!

- ([ntnj + 1) 1 + l ln(-p) + ([ntn ] + 1) - In A

tntnl+1
-(P+1) " lnQ(1)-X(n-i+1;n)]

+ (n - [ntn1 - 1) In 1 [:-[Q(l) - X(n - [ntn]; n] /P)

where X(n;n) < Q(1) < 0, p < 0, and A > 0.

Solving OCST(P, Q(1), A; X)/MA = 0 expresses the estimate A given the

parameter estimates A and Q^(1):

A = -A[tn + (1/n)JI[Q^(1) - X(n - [ntn,];n)]

(5.2.4) ~ -tA[Q-(1) - X(n - [ntnl;n)].

Hall (1982) uses this expression to reduce the three parameter log-likelihood

£ST to a function of only p and Q(1) by defining, for X(n; n) < Q(1) < oo,

S'T(P, Q(1); X)

=ST(P, Q(1), J&; X)

In n! _ ),[ntI+(l - t.)n-lntni In - [ntn] _ .!

-([ntnj + 1) In(-p) + ([ntn l + 1)! ln[Q(1) - X(n - [ntnl; n)]

[ntl+l-( +1: i= lnjQ(1) - X(n -i + 1; n)],

which is the same function (up to terms not involving p and Q(1)) maximized

by Smith and Weissman (1985) to obtain parameter estimates.

If p < -1, the function £ST(') has no maximum since for any p <

1, limq(1).X(n;n)+ £ST(P, Q(1); X) = 0o. Therefore, Hall's estimates based

on the largest order statistics from a short tailed probability model are denoted
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by (A,Q-(1),A,), where (A,Q^(1)) is the maximum of £CST(P, Q(1); X) in the con-

strained parameter space {-1 < p < 0, X(n;n) < Q(1) < oo}, and & is given

by (5.2.4).

To derive the large sample properties of Hall's estimators for the short tailed

case based on the largest order statistics, first express Hall's estimators for p

and Q(1) as solutions to a set of estimating equations, take the Taylor's series

expansion, and then compute the asymptotic distribution of each term. The

distribution of , then follows since it is a function of 0 and Q^(1). This approach

yields the following result.

THEOREM 5.2.1. Suppose that fQ(1 -u) = uP+IL(u), where -1 < p < 0
and

L(tu) 1 _ A(u)R(t)

for some positive measurable functions A(u) and R(t) where limt_.o+ R(t) = 0.

Let {Tn} be a sequence of thresholds defined on (Q(O), Q(1)) such that nt --, 00

and tn -+ 0 as n --+ oo, where t* = 1 - F(Tn). Further, suppose -pIQ(l) -

Tn]hQ(l - t*) - 1 + O(R 1 (tn)) for some positive measurable function R1 (t) with

limt...0 + RI(t) = 0. Let (kn,QnA(1), An) denote Hal's estimates based on the

largest order statistics from a short tailed probability model. Then conditional on

Tn,
A p + O(R)(tj)

Qn(1) is AN Q(1) + O(R*(tn)) ([ntn])-lVsT

A n h -p(t)P[Q(l) - Tnj + O(R*(tn))

as ntn --- o, where R*(t) = max{R(t),RI(t)} and

vii V12 V13]

VST- V21 v22 V23

V31 v32 V33 J

with

Vil = (p + 1)2 + O(R*(tn)),
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V22 = + 1 (2p + 1)[Q(1) - ]2 + O(R'(t*)),

V33 = P2 (P + 1)[Q(1) - + 1)(lnt,) 2 - 2Intn + 2] + O(R*(tn)),

V12 = V21

- I) (2p + 1)[Q(1) - Tn] + O(R'(tn)),

V13 = V31

p(p + 1)[Q(1) - Tn(tn)P[1 - (p + 1) Int] + O(R*(t*)),

V23 V "32

- (p + 1)(2p + 1)[Q(1) - Tn]2(tn,)P(lntn - 1) + O(R*(t,)).

PROOF. Attention will first be paid to the pair (0,Q^(1)) since A is a

function of these two parameters. Write
a ST (P, Q(1); X)

ap

and
aZST(P Q(1); X)

aQ(1)
as sums of the independent exceedences Xi - Tn given Xi > Tn. That is,

8 CsT(P' Q(1); X) [nt] +1 1 I In [ X(n-i+1;n)-Tn]

ap - =2 Q(1) -Tn

[nt*l 1.1 11 . _______-T

= _{( n) 2 ITQ(1)-T

Int*]

=i 1 (p,Q(1);x i Tn)

8 zST(p, Q(1); X) _ [nt n

8Q(1) p[Q(1) - Tn]

I + 1 [nt1) X= T- -; +1;i - Tn

nt [(1__

=1 -PJQ(1- Tn]
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[ntn.

S2 '(P, Q (1);Xi - Tn)

Therefore, Hall's estimates (O,, Qn,(i)) can be expressed as the solution to the

estimating equation

0 = (ntn~j-1/2 nt~nI (in, Qn'(1); Xi-n
O([nt;]f - I/2 Z II

i=1[t2(PnQn^(1);Xi- Tn)j

Take the first order Taylor's series expansion about the true parameter values

(p, Q(1)) of the right hand side to obtain, for some point (p*, Q* (1)) on the line

segment between (On, Qn^(1)) and (p, Q(1)),

tnt:I! [I(P, Q(1); Xi - Tn)
0 =([ntfl)-1 /2 ZF

= 2 [,2(p, Q(1); Xi - T)

a1 (p*, Q * (1); Xi - T) IO1(p*, Q*(1); Xi - T,)
- ap aQ(1)+ ([,ntnl) - '

i=1 a02(p*, Q*(1); X - Tn) aI, 2(p*, Q'(1); Xi - T,)
ap )Q(1)

F ([nt ])1 /2  O ]

From the Central Limit Theorem for an iid sequence,

[ntI.] l(P,Q(1);Xj-T )l

([hill) - 112  is AN(n, ([,nt)-En)
=1 [,2(P, Q(1); X -T)]
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as nt* -+ oo, where

01 ,(P, Q(1); Xi - T) 1
un = E X-T IX>T I ' 1

0k2 (P, Q(1); Xi - Tn)

[(p(ntj) + O(R(t) 1O(R*(tj) O(R(ts))

and

En= Coy X-Tn I X>T. ( 2(p, Q(1);Xi - Tn) i(pQ(1);X i - Tn)

a21 022

with

011 = ( 1 [j) + O(R*(t n))

1 o(R' (t*)),(1 * )
022-- (2p - 1 + p~ft ]) fQ(1) -Tn-2 + O(R*(t ))

12 [Q() - +- +O(R(t)),

2p + 1

012 = 021
_ 1

-p(p + 1)Q(1) - Tn]- 1 + O(R*(tn)).

This result follows from the expressions for the moments given in Theorem 2.4.1.

For n sufficiently large to make the O(R*(t,)) terms negligible, notice that

En is positive definite if and only if -1 < p < 0.
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If E, is positive definite, then from the Weak Law of Large Numbers and

the fact that (p*,Q*(1)) P ) (p,Q(1)) as nt, -- oo, it follows that

CIO 1(p*,Q*(1);X i - Tn) 10I (p*,Q*(1);Xi - Tn)
[ntn* - ap aQ(1)

i=1 a02(P,Q*(1);xi- Tn) a 2 (P,Q(1);xi - Tn)
ap aQ(1)

01

as nt* oo. This result follows from the expressions of the derivatives for the

estimating equations given in Appendix F and the moments given in Theorem

2.4.1.

The asymptotic distribution of (On, Qn^(1)) then follows from Slutsky's The-

orem. Since jn is a function of (On, QWA(1)), the result of the theorem follows.

It is not immediately obvious that the tail estimates motivated from the

parameterization in this section fit into that given in (2.3.5-2.3.7). However,
notice that for 1 - t* < u < 1,

Q^(,,) .Q^(1) - (1 - ,,-. r(-)

=Q(1) ( u)- [Q(1) - T

=Q (1) n )
=Tn- [Q^(1) - Tn] [( Y U - -1

=Tn + (-A[Q(1) - TO,) - g t, -A

and for Tn < x < Q(1),

F-(z) =1 - [Q(1) - x]- '/A -
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=l -[*1) -zl-/ _X(t n)A[- (1) _Tn]] I/

_ _ _ _ _ _ _ 1 / .
=1 - t Q(1) - - Tn
=1 - fn, Q^e(1) - T,

* ,t. -1 ( -( ( - T,,),-;
= 1 - t n 9 A ) - T ,,,

and

fa(z) = (- v) [Q(1) - z-(I1I')-1 .(-A)-r/p

=t' ( - Q'1 ) [1  x*1 - TnZ- n -1 -

=t* - Tn]) (g-)' [(1- TJ(x - Tn);

Therefore, the tail estimates based on the parameter estimates from this param-

eterization of the tail follow under the unified approach proposed in Subsection

2.3 where & -- [Q-(1) - TnJ. For comparison with other parameter estimates,

the following corollary is easily shown.

COROLLARY 5.2.1. Suppose the assumptions of Theorem 5.e.1 hold. Then

conditional on Tn,

A i AN +O(R(tn)) = p (R(t',,
an] -prQ(1) - Tn] + O(R*(ta)) [ + O(R*(tn))

([ntn ])-I V;T)

as ntn -+ oo, where

V*T v [v V;2 1 1
v;1i V;2
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with

V11 =(p + 1)2 + O(R*(t)),

V22 =2p2 (p + 1)[Q(1) - T1 2 + O(R*(tn,))

=2a 2(p + 1) + O(R*(tn)),

V1*2 =V2;1

=p(p + 1)[Q(1) - Tn] + O(R*(tn))

=- a(p + 1) + O(R'(tn)).

5.3 Estimation Assuming The Class Of Tail Behavior Is Long Tailed

To obtain tail estimates when the tail behavior is known to be long tailed,

choose, as a function of n, a threshold percentile tn. Then let the threshold value

be given by Tn = Q_(1 -tn). Parameter estimates are obtained by assuming that

the underlying distribution satisfies

(5.3.1) Q(u)=(1-u)P - .A/p, 1-tn < u<l,

(5.3.2) F(z) = 1 - z - 1/P. (p/A)-1/p, z > Q'(1 - tn),

(5.3.3) f(z) = (1/p)z - (/P ) 1 (p/A)/p, z > Q_(1 - tn),

where p > 0 and A > 0 are unknown parameter values.

The most popular estimate of the tail exponent p was proposed by Hill

(1975), who derived parameter estimates based on the largest order statistics.

Stated in terms of the exceedence over threshold approach the [nt,,] + 1 largest

order statistics are given by

Q'(1 - tn) = T= X(n - [nt,];n) < X(n- [ntn] + 1;n) < ... < X(n;n).

If the underlying distribution satisfies (5.3.1-5.3.3), the log-likelihood of the

[ntnj + 1 largest order statistics is given by

ZLT(P, A; X) = In
(n - [ntnl - 1)!
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-(+ntn+ 1)1 +1 lnp +(f n t n j+1)! n A

Intn]+1

- (!+i) /' lnX(n-i+l;n)

+ (n - [ntn] - 1) In (I - [-X(n - [ntnj; n)] -./P)

where p > 0, and A > 0.

Solving aCLT(p, A; X)/A = 0 expresses the estimate & given the parame-

ter estimate A:

A = A[tn + (1/n)]PX(n - [nt,,J;n)

(5.3.4) Ato X(n - [ntnl;n).

As in the maximization of the log-likelihood for the order statistics from a

short tailed distribution, the two parameter log-likelihood LLT is reduced to a

function of only p by defining

ZLT(P; X) =,CLT(P, A; X)
- nn! t 1)tnt.l+l (I - tn)n-[tnJ-l1
~ (In _ [nt. _ ! n

- ([ntnj + 1)lnp + ([ntnj + 1)-In Tn
p

[ntn + 1-( +1 E / " nX(n-i+l;n).

P1+1 =1

Therefore, Hill's estimate for the tail exponent p is found by solving
861LT(p; X)/ cp = 0 to obtain

A- [nt] + 1 In X(n - i + 1; n) - In X(n - [ntnl;n)

[ntn + I In X(n - i + 1; n) - In X(n - [ntni; n)

(.3.5) In X(n-i+1; n)
[nt,- 1 X(n - [ntn; n)J
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The asymptotic distribution of Hill's estimate has been considered by many

authors. For example, Mason (1982) gives necessary and sufficient conditions for

Hill's estimate to converge almost surely or in probability to a constant; Davis

and Resnick (1984) motivate Hill's estimator from extreme value theory and

derive its asymptotic normality.

The following theorem on the asymptotic normality of # is similar to one

given by Goldie and Smith (1987), who also place rates of convergence on the

slowly varying function and derive the asymptotic normality of Hill's estimate.

The key difference in the theorem given here and Goldie and Smith's result

is that the bias due to the threshold value is expressed in terms of rates of

convergence. Also different from Goldie and Smith is the proof, which uses

(2.2.1), the representation for the quantile function of the exceedences.

THEOREM 5.3.1. Suppose that fQ(1 - u) = uP+lL(u), where p > 0 and

L(t) -11 A(u)R(t)

L(tu)

for some positive measurable functions A(u) and R(t) where limt_0+ R(t) = 0.

Let {T.} be a sequence of thresholds defined on (Q(O), Q(1)) such that nt, -. co

and tn -+0 as n -- oo, where tn = 1- F(Tn). Further, suppose pTnhQ(1 - t ) =

1 + O(Rl(tn)) for some positive measurable function R 1 (t) with limt.o+ Rl(t) =

0. Let (,on, A) denote Hill's estimates based on the largest order statistics from

a long tailed probability model given in (5.3.5) and (5.3.4). Then conditional on

Tn,

AnI is AN( p j, R*( ([ntn'If1VLT)J k. [p(t*)PTn + O(R*(tn*))

as ntn --+ c, where R*(t) = max{R(t),RI(t)} and

vil V12 1
[. v2 1 v2 2 J

with

=il = p2 + O(R'(t'*))
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V22 = p 2 (tn )2p(pInt + 1)2 T.2 + O(R*(t:,))

V12 = V21

= P2 (tn)P(plntn + 1)Tn + O(R*(tn))

PROOF. Attention will first be paid to the distribution of A since & is a

function of p. First, write A as the sum of the independent exceedences Xi - T"

given X i > Tn,

I [ntjnl X(n - i + 1; n)=([.t ,)-I  n ,- [-tnl;-n)

=([nt])- 1  In (+ Xi Tn)

i=1

From the Central Limit Theorem for an iid sequence,

(Int')- l n ( + X'-T is AN(s, ,([ntn]f-on),
t=I

as ntn -. oo, where

n= E X-T X>T I + X - T )

= p + O(R*(tnj))

and

2 Var X-T IX>T,, Ins + ,Tn)

= p2 + O(R'(t;,)).

This result follows from the expressions for the moments given in Theorem 2.4.1.

Since ,n is a function of An, the result of the theorem follows. E

It is not immediately obvious that the tail estimates motivated from the

parameterization in this section fit into that given in (2.3.5-2.3.7). However,
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notice that for 1 - t4 < u < 1,

Qi(U) =(1 - ). (a/A)

=)- (1T

Tn + TnL U

and for z > Tn,

F-(z) =1 - x-11• -

=1- -1 * [A] n 1/0

=1 - t I

11
=i-1 tn 1+ x -Tn] '/

-n - Tn);-)

and

(x)= ) -(1/)-i •

=, , ( I ) [1 + x_- T.:] -('/A)-1

=t* (41-) -(g- T (z - Tn); -A).

Therefore, the tail estimates based on the parameter estimates from this parame-

terization of the tail follow under the unified approach proposed in Subsection 2.3

where a = AT,. For comparison with other parameter estimates, the following

corollary is easily shown.
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COROLLARY 5.3. 1. Suppose the assusmptions of Theorem 5.9.1 hold. Then

conditional on Tn,I is AN ([ p + O(R*(tn*)) 1 (Rt)] nte~l-1Ve'\] \ ~pTn + O(R*(t*)) a + O(R*(tn*) ) ~ ])

as nt* - oo, where

[ p2+ OR*(~)) p'Tn + O(R*(tn))]
=l2Tn + O(R*(t*)) pT + O(R*(t~n)J[ 2 + O(R*(t*)) ap + O(R*(t*))

lap +O(R*(tn*)) a2 + (R*(t*))n
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6. DISCUSSION OF PARAMETER ESTIMATE PROPERTIES

6.1 Comparison Of Parameter Estimates

All comparisons are made assuming the sequence of threshold values {T}

satisfies nt* -- oo as n --- oo, where t* = 1 - F(T). This assumption is

necessary for the asymptotic normality of the proposed parameter estimates.

The tail exponent estimators are the focus of this discussion since the estimates

of a show no important differences.

All of the parameter estimates proposed in Sections 3-5 are biased in general.

This is due to the difference between the true value for the tail and the model for

the tail used to obtain parameter estimates. Under the conditions of Theorems

3.2.1, 4.2.1, 5.2.1, 5.3.1,

Bias(PGPD) = O(R*(t*)), -2 <p < oo, p # 0,
p- 4

Bias(PGEV) - p--)+ O(R*(t )), -. 356967 - p0 < P < 1, p $ 0,
4p(p - 2)2

Bias(AHaU) = O(R*(t*)), - < p < 0,

Bias(AHin) = O(R*(t)), p > 0,

as nt* --+ 00.

Only the GEV estimate fails to be asymptotically unbiased under the ad-

ditional condition tn --+ 0 as n --+ oo. Therefore, the GEV estimate would be

inappropriate for very large samples. A comparison of the magnitudes of the

bias for small samples is a topic for further investigation.

No global statements can be made regarding the GPD estimates, Hall's

estimates, and Hill's estimates since they are not defined on a common range

of support. Assuming the underlying probability model is short tailed, the GPD
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estimate and Hall's estimate are asymptotically equivalent since

ARE(PGPD,Hafl) = lim Var(GPD)
n-*o Var(all)

lim ([ntO]) - ' ((p + 1)2 + O(R*(tn))}

ni co ([nt ])-1 {(p + 1)2 + O(R*(tn))}

-1, -1<p<O0.

Assuming the underlying probability model is long tailed, Hill's estimate is

preferred since

ARE(5GPD,AHiU) = lir Var(AGPD)
n.oo Var (AHil)

([ntl)-1 { (p + 1)2 + O(R*(t*))}= +i
n-oo ([nt )-I (p2 + O(R*(t*))}

= (1+4)2

>1, p>O.

This gives an example of the improved estimation possible through incorporating

additional assumptions into the probability model. The IQ box plot discussed

in Subsection 5.1 is one data analytic tool for validating assumptions on tail

behavior.

6.2 Interpretation Of Parameter Estimates

The majority of the interest in tail behavior is in the tail exponent p because

it describes important properties of the underlying distribution. For example,

many statistical estimators make the assumption that the underlying distribution

has finite variance, which corresponds to assuming p < 1. Also of interest is

the existence of a finite upper endpoint for the underlying distribution, which

corresponds to assuming the short tailed class where p < 0. Davison (1984)

proposes modeling the tail exponent as p = 'zi for a vector of design constants

or covariates in order to allow comparisons of the tail behavior for different

populations or pool information from related populations.
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The focus of attention on the parameter estimates for interpretation is nat-

ural, but for the most part unjustified. The confusion over parameter estimate

interpretation is twofold. First, the parameters defining tail behavior are non-

identifiable and cannot be estimated without bias. Second, the true parameter

value may not provide the best fit to the observed tail over the range of interest.

6.2.1 Parameters Are Nonidentifiable. One important complication to the

interpretation of the parameter estimates is due to the bias in the estimates.

This bias is not due to any failure of the methodology. Instead, it is due to the

failure of a parametric model to completely specify the underlying distribution.

Using the estimate of p from the GPD modeling or either Hall's estimate

or Hill's estimate depending on the appropriate classification of the underlying

distribution, then asymptotically, E(^) = p + O(R*(tn)). While it is certainly

true that the bias goes to zero as t, -* 0+, the rate of convergence can be very

slow. Recall from the rate of convergence comment in Subsection 2.2 that one

possibility is R* (t*) - 1/ In tn, which would require an extremely large sample

size to obtain a negligible (but still present) bias.

It is popular to form asymptotic confidence intervals for the tail exponent

estimate p using the asymptotic normality property. However, when estimating

the standard error of A, replacing the true quantities with their estimates adds a

bias to the estimated standard errors since the parameter estimates are biased.

Therefore, confidence intervals for p are invalid except for very large sample sizes

when the bias is sufficiently small.

6.2.2 The Case of p = 0. Many common parametric probability models are

classified as medium tailed. For example, the Normal, Exponential, Weibull,

Logistic, Lognormal, and Gumbel (or type I Extreme Value) distributions have

tail exponent p = 0. However, the case p = 0 has not been discussed in the

theoretical discussion of the proposed tail estimates.

This is predominantly due to the widely different types of tail behavior

displayed by probability models in this class. For example, both the Normal and
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Lognormal have p = 0, but from Figure 5 it is clear that the twa distribution

require very different tail estimates.

itile Time tige

a41.5 lp

.5t

-1

-1.5

.2 3 .4 t 6 t

FIG. 5. Graph of the quantile function for the Normal and Lognormal distri-
butions. Both theae distributions have p = 0, but the tail from .75 to .99 should
obviously be modeled differently.

The complication to the medium tailed class is that ultimately, the tail ex-

ponent is zero. That is, far enough out in the tail, all the distributions in the

medium tailed class display the same tail behavior. In an attempt to differenti-

ate between the tail behavior before this ultimate convergence, Schuster (1984)

proposes the following subclasses:

(i) p = 0, L(u) --* oo as u --+ 0 + = medium-short tails;

(ii) p = 0, 0 < limu.. 0 + L(u) < oo = , medium-medium tails;

(iii) p = 0, L(u) --, 0 as u --+ 0 + =: medium-long tails;

When the range of interest is not the extreme end of the tail, a penultimate

model may better fit the observed tail. The ideas of ultimate versus penultimate

behavior have long been recognized in extreme value theory. It is not surprising

that these same issues occur in estimating tail behavior since the justification

for the tail behavior model fQ(1 - u) = uP+ 1 L(u) follows from extreme value

theory.

The penultimate modeling of tail behavior is to allow a nonzero value for
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p which more closely approximates the observed tail on the region of interest.

This idea adds new problems to the identifiability of the true tail exponent p,

but greatly improves the tail estimates.

6.2.3 Summary of Parameter Interpretation. Because the parameters are

nonidentifiable and a value other than the true tail exponent may fit better to

the observed tail, there are serious complications in interpreting the parameter

estimates.

Therefore, one must choose which aspect of the tail is of interest and sample

accordingly. If the tail exponent p is the focus of the analysis, an extremely large

sample is required to make the bias negligible and force an extreme threshold

value giving the ultimate convergence modeling.

6.3 Effect Of Bias In Parameter Estimates On Tail Estimates

If the tail estimates are of interest, the bias in the parameter estimates is

less likely to seriously alter the tail estimates. The estimators using the GPD

modeling and both Hall's estimators and Hill's estimators are an interesting

special case when the bias is O(R*(tj)). The following theorem shows the bias

in the tail estimates given in (2.3.5-2.3.7) is of the same rate in this special case.

THEOREM 6.3. 1. Suppose that fQ(l-u) = uP+lL(u), where p E IR, p $ 0
and

L(t)

L(tu) -1 <A(u)R(t)

for some positive measurable functions A(u) and R(t) where limt_.o+ R(t) = 0.

Let {Tn) be a sequence of thresholds on (Q(O), Q(1)) such that ntn - oc and

tn -# 0 as n -. oo, where tn = 1 - F(Tn). Further, let a = a(t') be the scalar

value of a function a(.) satisfying a(t*)hQ(1 - tn) = 1 + O(RI(tn)) for some

positive measurable function Ri(t) with limt.o+ RI(t) = 0. Let (An, an) denote

the parameter est.mates. Suppose that conditional on Tn,

[A 1 ([AN p + O(R*,tn)) 1 nn- [v11 v121

J ~ ~~~ a+O(R*(tn*)) J[2 '2
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as nt* --+ co for scalars vij such that the covariance matrix is positive definite.

(a) For 1 - tn < u < 1,

Q-(u) is AN(Q(u) + e* (t, u), (nt 1 . o(u))

where le(tn,u) :_ A*(u)R*(t ) for some positive measurable function

A",(u), and o2(u) is given by (2.3.8).

(b) For T. < z < Q(1),

where lc -(tn,z)l _ A"*(x) • t*Rs(t*) for some positive measurable function

A*(u), and A (X) is given by (2.3.9).

(c) For T < x < Q(1),

f-(x) is AN f (x) + e;(t,z), (tn/n) a X

where le;(t*,z)l :_ A"(z). t*R, (t,) for some positive measurable function

A"(u), and oa(x) is given by (2.3.10).

The important result from this theorem is that the bias in the tail estinmtes

is of the same order as the bias in the parameter estimates. The bias is negligible

for t, sufficiently small, but the idea of 'sending tn to zero' is unacceptable in ap-

plications since this effectively removes the desire to estimate the tail. Therefore,

some amount of bias must be accepted due to the very nature of the problem.
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7. THRESHOLD SELECTION

In order to reduce the bias in the parameter estimates proposed in this work,

the threshold percentile tn should be chosen so that limn-.oo tn = 0. However, the

asymptotic results for these estimators require that limn--... ntn = o. Therefore,

a trade off between bias and variance must be made when choosing the threshold

value.

Further, the concept of an 'optimal' threshold percentile can be viewed one

of two w7 s. If the tail behavior parameters are the focus of the analysis, then

a threshold should be chosen which minimizes some criterion function for the

parameter estimate (such as MSE). However, if the tail estimates are the focus

of the analysis, then the threshold should be chosen which best fits the observed

tail.

7.1 Optimal Thresholds Based On The Parameters

Cs6rg6, Horveith, and R~vdsz (1987) investigate the existence of optimal se-

quences for the threshold for any estimate of the tail exponent. They conclude

that since a sequence for the threshold based on some optimality criterion de-

pends on the unknown tail exponent and slowly varying function, it is useless in

practice.

In an attempt to avoid this dependency on unknown quantities, Hall and

Welsh (1985) considered Hill's estimator and proposed a parametric model for

the slowly varying function. They propose an optimal threshold sequence topt =

Co(-y, A) • n- 1/2f, where Co(-y, A) is selected according to some criterion such

as MSE, under the assumption L(u) = (1/pA)[1 - 8u + o(u)j, for -1 > 0 and

A > 0. Hall and Welsh then propose estimates for -y and A which are used to

estimate the optimal threshold sequence. This procedure is highly dependent

on the quality of the parameterization for L(u), and the associated parameter

estimates performed quite poorly in their simulation study.
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7.2 Optimal Thresholds Based On The Tail

When the focus is on the tails, the 'best' threshold is defined as the one that

provides a tail estimate 'closest' to the observed tail. This leads to a data analytic

threshold selection procedure where the observed tail dictates the threshold value.

The following algorithm is proposed for choosing a threshold percentile t,,

which best approximates the sample.

" For t= 1/n,2/n,...,(n-1)/n:

1. Compute Ft((u) based on the exceedences Xj - Q-(1 - t) given X, >
Q'(4 -t).

2. Compute

dt .sup IF(z) - F((x)l.
Q-(I-t)<z<Q-(1)

" Choose topt = t, where t is the smallest solution to d = mint dt.

This algorithm chooses the threshold percentile which minimizes the dis-

tance between the estimated distribution function and the sample distribution

function over the tail values. It is an attempt to satisfy the intuitive behavior

of the threshold percentile, where tn is small enough to make the bias small and

ntn is large enough so that the tail estimates are based on a large number of ob-

servations. The properties of this threshold selection procedure warrant further

study.
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8. MOTIVATING EXAMPLE

The importance of estimating the frequency and magnitude of flood dis-

charges in rivers is obvious. In most instances, the 'average' flood discharge is

of little interest. Instead, the focus of inference is on floods with small probabil-

ities of occurrence. This naturally then leads to investigation of the tail of the

underlying distribution.

Frequently estimated quantities in hydrology are the 'hundred year flood' or

'thousand year flood,' i.e. the flood discharge such that a flood of this magnitude

(or greater) will occur once in 100 years or 1000 years (on average). These are

convenient synonyms for Q(.99) and Q(.999), r tively. Therefore, estimating

the tail of the underlying quantile function is the main objective of the analysis.

Two data sets from hydrology have been obtained from the flood frequency

analyses discussed in Pericchi and Rodrfguez-Iturbe (1985). They consider two

rivers in the United States that are of importance for the regions in which they

are located and whose floods have been the object of previous calculations for

engineering works. The first data set is taken from Benjamin and Cornell (1970)

and contains 59 years of annual floods (1902-1960) for the Feather River at

Oroville, California. The Feather River annual floods are given in Table 6 along

with descriptive statistics for location, scale, and tail behavior.

The second data set is taken from Wood, Rodriguez-Iturbe, and Schaake

(1974) and contains 37 years of annual floods (1929--1965) for the Blackstone

River at Woonsocket, Rhode Island. The Blackstone River annual floods are

given in Table 7 along with descriptive statistics for location, scale, and tail

behavior.

The IQ box plots for the Feather River data and the Blackstone River data

are given in Figures 6a and 6b, respectively. Both distributions are skewed and

heavy tailed, as is expected in flood data. Large values in the annual flood

sequence are often interpreted as outliers since they are difficult to model, yet

are expected due to nature and should be deleted only in special circumstances.

The most important but also the most difficult problem in analysis is the
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TABLE 6
Annual floods (1902-1960) for the Feather River at Oroville, California taken
from Benjamin and Cornell (1970). Descriptive statistics for location, scale, and
right tail behavior are also given. Notice that the underlying probability model is
skewed and heavy tailed.

Year Flood Discharge (ft3 /sec) Year Flood Discharge (ft3 /sec)

1902 42,000 1932 22,600
1903 102,000 1933 8,860
1904 118,000 1934 20,300
1905 81,000 1935 58,600
1906 128,000 1936 85,400
1907 230,000 1937 19,200
1908 16,300 1938 185,000
1909 140,000 1939 8,080
1910 31,000 1940 152,000
1911 75,400 1941 84,200
1912 16,400 1942 110,000
1913 16,800 1943 108,000
1914 122,000 1944 24,900
1915 81,400 1945 60,100
1916 42,400 1946 54,400
1917 80,400 1947 45,600
1918 28,200 1948 36,700
1919 65,900 1949 16,800
1920 23,400 1950 46,400
1921 62,300 1951 92,100
1922 36,400 1952 59,200
1923 22,400 1953 113,000
1924 42,400 1954 54,800
1925 64,300 1955 13,000
1926 55,700 1956 203,000
1927 94,000 1957 83,100
1928 185,000 1958 102,000
1929 14,000 1959 34,500
1930 80,100 1960 135,000
1931 11,600

Measures of Center Measures of Dispersion

Median: 58,600.0 Interquartile Range 70,600.0
Mean: 70,265.1 Standard Deviation 52,023.5

Measures of Right Tail Behavior

QF(.90) =.5411 QF(.95) = .8952 Q=(.99) 1.0227
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TABLE 7
Annual floods (1929-1965) for the Blackatone River at Woonsocket, Rhode Island
taken from Wood, Rodriguez-Iturbe, and Schaake (1974). Descriptive statistics
for location, scale, and right tail behavior are also given. Notice that the under-
lying probability model is skewed and heavy tailed.

Year Flood Discharge (ft3 /sec) Year Flood Discharge (ft3 /sec)

1929 4,570 1948 5,810
1930 1,970 1949 2,030
1931 8,220 1950 3,620
1932 4,530 1951 4,920
1933 5,780 1952 4,090
1934 6,560 1953 5,570
1935 7,500 1954 9,400
1936 15,000 1955 32,900
1937 6,340 1956 8,710
1938 15,100 1957 3,850
1939 3,840 1958 4,970
1940 5,860 1959 5,398
1941 4,480 1960 4,780
1942 5,330 1961 4,020
1943 5,310 1962 5,790
1944 3,830 1963 4,510
1945 3,410 1964 5,520
1946 3,830 1965 5,300
1947 3,150

Measures of Center Measures of Dispersion

Median: 4,970.0 Interquartile Range 1,960.0
Mean: 6,372.9 Standard Deviation 5,276.7

Measures of Right Tail Behavior

QF(.90) = .9541 QF"(.95) = 2.5587 Qr(.99) = 2.5842
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FIG. 6. Identification quantsle box plots for the data used a exam pies. The
identification quantile box plot is a truncated plot of the sample identification
quantile function with an overlaid reference line to help in assessing the shape of
the underlying distribution. Figure 6a describes the Feather River annual floods
for the years 1902-1960 measured at Oroville, California. Figure 6b describes the
Blackstone River annual floods for the years 1929-1965 measured at Woonsocket,
Rhode Island. For each data set, it appears the underlying distribution is skewed
and heavy tailed as is expected in flood data. The largest observations of the
Blackstone River data can be interpreted as outliers, but large observations in
flood data are certainly expected due to nature so deleting data points is acceptable
only under special circumstances.



73

selection of an appropriate probability model for the annual floods. The implicit

assumption of the analysis is that the probability model fit to the observed annual

floods is valid beyond the observed range of values. Three common parametric

probability models used in flood frequency analysis are the Gumbel (also referred

to as the Type I Extreme Value) distribution, the Lognormal distribution, and the

Pearson Type III (also referred to as the three parameter gamma) distribution.

The Gumbel can be theoretically motivated since the annual flood can be

considered as the maximum of many independent and identically distributed

random variables from any population classified as medium tailed (e.g. normal,

exponential, Weibull, log 'ormz ogistic). The Lognormal and Pearson type III

are convenient in that they have a small number of parameters and are flexible

in fitting the data.

Each of these probability models has been fit to the Feather River data and

the Blackstone River, and interposed over the sample quantile function Q-(u)

in Figures 7a and 7b, respectively. Notice that all three models appear reason-

able for describing the annual floods. In fact, using the Kolmogorov-Smirnov

goodness of fit test, all fail to reject at a = .05.

Since the tail of the quantile function is the focus of the analysis, consider

Figures 8a and 8b which graph these same functions on the upper quartile. For

the upper tail, these 'acceptable' models provide very different estimates. This is

not surprising since the estimated probability model was fit using the entire sam-

ple and the model will best fit the center where the majority of the observations

lie.

In order to remove the influence of observations at the center, estimators

based on the exceedences of a threshold are appropriate. Further, a generally

applicable estimator, free of the restrictions imposed by a parametric family, will

allow the data to dictate the tail estimate. Therefore, the tail estimates proposed

in this work will provide useful tools for improving the analysis of annual flood

data.

Before computing the estimates proposed in this work for the Feather River

data and the Blackstone River data, the observations have been centered and
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FIG. 7. Graph of the estimated Gumbel model (solid line), Lognormal model
(dotted line), and Pearson Type III model (solid line with blocks) overlaid on the
sample quantile function (step function) for the data used as examples. Figure
7a is for the Feather River data and Figure 7b is for the Blackstone River data.
All three models appear reasonable for describing the annual floods, and all fail
to reject the Kolmogorov-Smirnov goodness of fit test at a = .05.
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FIG. 8. Graph of the estimated Gumbe model (solid line), Lognormal model
(dotte line), and Pearson Type III model (solid line with blocks) overlaid on
the sample quantile function (step function) on the upper quartile for the data
used as examples. Figure 8a is for the Feather River data and Figure b is
for the Blackatone River data. Notice that the three probability models provide
very different tail estimates. This is due to the use of the entire sample in the
estimation, forcing the model to fit better at the center of the distribution where
the majority of the observations lie.
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scaled by subtracting the median and dividing by twice the interquartile range.

The parameter estimates are not location-scale invariant, and a different stan-

dardization will result in different parameter estimates. However, this is not a

serious issue since the tail estimates are the focus of the analysis and can be

obtained in the original unit. by correcting for the standardization.

8.1 Tail Estimates For The Feather River

The parameter estimates for the GPD and GEV modeling of the exceedences

are given in Table 8. Since it appears reasonable from the IQ box plot of the

Feather River Data to classify the underlying probability model as short tailed,

Hall's parameter estimates are also appropriate and tabled. A further implication

of this classification is the existence of a finite upper bound Q(1). This does

not imply that a 'maximum flood level' exists, but that the best approximating

probability model has such an upper bound. A graphical comparison of the

different parameter estimators is given in Figure 9.

8.2 Tail Estimates For The Blackstone River

The parameter estimates for the GPD and GEV modeling of the exceedences

are given in Table 9. Since it appears reasonable from the IQ box plot of the

Blackstone River Data to classify the underlying probability model as long tailed,

Hill's parameter estimates are also appropriate and tabled. It is interesting to

note that the threshold selection algorithm chose the same threshold percentile

for each of the proposed tail estimators. However, even with the same threshold

percentile the parameter estimates are different. A graphical comparison of the

different parameter estimators is given in Figure 10.
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TABLE 8
Table containing the optimal threshold percentile and parameter estimates for the
proposed tail estimates based on the exceedences of a threshold for the Feather
River annual floods. Parameters are estimated using the GPD modeling, the
GEV modeling, and Hall's estimate for an underlying short tailed distribution.
The classification of the underlying distribution as short tailed follows from the
IQ ar plot. Notice that since a short tailed probability model appears reasonable,
a finite upper bound Q(1) is estimated by the GPD estimate and Hall's estimate.
The GEV estimate has Q^(1) = oo since A > 0.

Threshold Percentije t P a Q(1)

GPD 20/59 .339 -. 259 .426 290,571 ft 3 /sec
GEV 23/59 2 .390 .021 .254
Hall's Est. 24/59 .407 -. 106 .341 528,615 ft3 /sec

Feathei River Annual 11lds (19N-68)
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FIG. 9. Graph of the proposed tail estimates based on the exceedences of a
threshold for the Feather River annual floods on the upper quartile. The tail
estimate based on the GPD modeling (solid line), GEV modeling (dotted line),
and using Hall's estimate for an underlying short tailed probability model (solid
line with blocks) are overlaid on the sample quantile function (step function) for
comparison.
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TABLE 9
Table containing the optimal threshold percentile and parameter estimates for the
proposed tail estimates based on the ezceedences of a threshold for the Blackstone
River annual floods. Parameters are estimated using the GPD modeling, the
GEV modeling, and Hill's estimate for an underlying long tailed distribution.
The classification of the underlying distribution as long tailed follows from the
IQ boz plot.

Threshold Percentile t a
GPD 18/37 .486 1.100 .218
GEV 18/37 .486 1.076 .131
Hill's Est. 18/37 t .486 1.602 .135

Slakstom live haul frloes (1929-5)
3.9 tail of Estimted IMtile Factions 1sod on the Ixodones

3

2.5

2

1.5

u-axis in uits of W to the 4

FIG. 10. Graph of the proposed tail estimates based on the exceedences of a
threshold for the Blackstone River annual floods on the upper quartile. The tail
estimate based on the GPD modeling (solid line), GEV modeling (dotted line),
and using Hill's estimate for an underlying lone sailed probability model (solid
line with blocks) are overlaid on the sample quantile function (step ftnction) for
comparison.



79

9. CONCLUDING REMARKS

Tail estimates of the underlying probability model are of interest in many

applications. In addition, the tail behavior of a probability model dictates

many theoretical properties with important implications for probability model-

ing. Therefore, generally applicable tail estimates can serve as valuable diagnostic

tools in fitting probability models to data.

In this work, tail estimates have been proposed which:

" use only the observations in the tail, and

" are generally applicable, making minimal assumptions on the underlying

probability model.

Two distinct approaches in this format are unified by modeling the density-

quantile function as a regularly varying function and representing the quantile

function for the conditional distribution of the exceedences of a threshold as

the sum of a parametric function and an analytic error function. The quantile

representation for the exceedences is the key to

(1) forming a parametric model for the tail of the underlying probability model;

(2) motivating methods for obtaining parameter estimates; and

(3) deriving the asymptotic properties of the proposed parameter estimates.

Parameter estimates may be obtained using a Generalized Pareto Distribu-

tion (GPD) or a Generalized Extreme Value Distribution (GEV) modeling of the

exceedences. Assuming the underlying distribution can be correctly classified as

either short tailed or long tailed, other estimates can be formed.

The unified approach allows for comparison of these different estimators.

All are shown to be biased, and no global statements can be made regarding an
'optimal' estimator.

Muck of the previous work on estimating tail behavior has focused solely

on the problem of parameter estimation. However, the parameters are shown to

be nonidentifiable and their estimators will always contain a bias which may be

non-negligible. In order to estimate the parameters with a reasonable amount of

precision, extremely large sample sizes are required.
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In this work, the focus has been on obtaining tail estimates. In this scenario,

the bias in the parameter estimates causes a bias in the tail estimate of the same

order. Bias reduction is made at the cost of inflated variance. Therefore, some

compromise must be made.

To demonstrate the tail estimators proposed in this work, two sequences of

annual floods were selected. The problem of probability modeling is an important

issue in hydrology since the estimate of the tail is highly dependent on the model

and there is little empirical evidence one can produce to support a given model.

Thus, a generally applicable approach to tail estimation where the data dictates

the form of the model is a useful diagnostic tool for further probability modeling.
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APPENDIX A

COMMON PARAMETRIC PROBABILITY MODELS

This appendix contains the identification standardized versions of many com-

mon parametric random variables. The identification transformation is useful in

comparing different types of tail behavior since the corresponding quantile func-

tion equals zero and has slope approximately one at u = .5.

The identification transformation of a random variable Y with distribution

function F(y), density function f(y), and quantile f-anction Q(u) is simply a

location - scale standardization. Let 1 = Q(.5), the median, and a = 2[Q(.75) -

Q(.25)], the quartile deviation. Then make the transformation ZQI = (Y -s)/a,

which results in the identification distribution function FI(z) = F(1 + az),

identification density function f1I(z) = a f(jA + az), and identification quantile

function QI(u) = (Q(u) - tz)/a.

This appendix defines the distribution function, density function, quantile

function, and density-quantile function for the identification standardized ver-

sions of some common parametric probability models. Graphs of these functions

are also given.
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* The Uniform Distribution is given by

0, z < -. 5

F(x)= + .5, -. 5<z<.5

{, > .5,

with quantile function

Q(U) = u-.5,

density function 1, -. 5 < x<.5

f) = 0, otherwise,

and density-quantile function

fQ(u) = 1.

These functions are plotted in Figure 11.

1istpilati Functio, r(x) Gumile Function, I(u)

-! -. - .- . 1 . 4 , 7 1 ! .1 .2 .3 .4 .3 .6 . .1 1 

1.5  Asitg Fuctien, f(x) S Nnsitv-Quantile Function, MQ(u)

1.2 1.2

.6 A.

.3F .3

FIG. I11. Uniform Distribution.
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9 The Negative Exponential Distribution is given by

F ( Z < ln2/(2n3)

1, z 1n2/(2 In 3),

with quantile function
In 2u

Q(u) = in 2'

density function

An3 e(21n3), z< ln2/(21n3)

0, z > In 2/(2 In 3),

and density-quantile function

fQ(u) = (2 In 3)u.

These functions are plotted in Figure 12.

Distribution Function, O(x) Gantill Function, Q(u)

.3.6
12~

-Z -1.7 -1.2 -. 7 -.2 .3 1 1 .i .3 .4A 1.7 .8.9

2 2hnsitv function, (x) 2 2hnsit-Quantile function, fo(u)

1,2 1.2

.4..

.7 12.Ngt3 ve E"on .n.a .. 4,.5.6 .7b., .,
FIG. 12. Negative Exponential Distribution.
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The Negative Weibull(p) Distribution, p > 0, (which is also referred to as

the Type III Extreme Value Distribution) is given by

_ exp{-[(ln2)/P-ox]P}, 
x < (in2)1/P/a

1, z > (In 2)1/P/a,

with quantile function

Q(u) (1n2)1/P - (-In"u)1 /P

density function

u[p(In 2) /P - ax)P-I

X)-- .exp{-[(ln2)'/P - ox]P}, x < (ln2)'/P/a

0, z > (In 2)/P/o,

and density-quantile function

f Q(u) = atpu(- In u) - ('/P) + ,

where a = 2[(In 4)1/P - (In 4- In 3) 1/P. These functions are plotted in Figure

13.

. Distpilatisa Function, I1(x) 1 uatilo function, Q(u)

P:1/3 4 p3

.4 -.2 __

.2 -A~ + r1/3

2.3 sitg Yantmce, M) 2.hasitM-Oiastil rantjrn, fo(ia)

r-1/3 r1/3 4

1.6 12.4

-2 L.47-2. 4. 6P:. 9.

F IG. 13. Negative Weibull(p) Distribution.
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a The Exponential Distribution is given by

F 0, z < - In2/(21n3)
F(z)

{2e-1 z> -In2/(21n3),

with quantile function
- 1n2(1 -u)

2 In 3

density function

A 0, x < -In 2/(2 In 3)

I(ln3)e - ( 2 1a 3)z , x>-ln2/(21n3),

and density-quantile function

fQ(u) = (2 In 3)(1 - u).

These functions are plotted in Figure 14.

1 isti km tim Fuctio, F(X) v Q till Fun tio, V Oe

.38 .6

.6 .2
.4 -.
.2 -.

- ,3 '1 , .1- '1 '2 '3 '4'A. ' ' ' 9. .

2  ns t fuction, t(x) h sit- kmtile Function, fQ(u)1,6 1.6

1.6, 1.2

.4. .4

'.1 . 1.3 2 1.... 5 . .9 1

FIG. 14. Ezponential Distribution.
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o The Logistic Distribution is given by
1F(X) = I

1 + e-(4ln3):

with quantile function

SInu - In(l-u)
41n3

density function d (4 In 3)e - (4 In 3)zf (Z) =(1 + C-(4 In )z)2'

and density-quantile function

fQ(u) = (4 In 3)u(1 - u).

These functions are plotted in Figure 15.

istrikatiee Fuaction, (x) lutile Fuetio, I()

.I .I
6.6

.4.

.2

itl faction. 1(x) l Asit- utilo Faction, (ON)

.. 6
.4. .

.22

FIG. 15. Logistic Distribution.
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* The Normal Distribution is given by

F(z) =O(az),

with quantile function

Q(U) -

density function

f(X) --o(a),

and density-quantile function

fQi(u) = -exp 2

where *(z) = ff-o0 4(t)dt, 4(x) = (*/V'X)e-z 2 /2 and a = 24-1(.75) -

,-1(.25)] ;, 2.6979. These functions are plotted in Figure 16.

1list ilatie Imrtiu, I(x) till r tif, (s)

.6

.4

.-1 -.,2 . 6 .

1 hsitg rwtiu, 1(x) NO msit-Waatile/ Imti, to(u)

.6, .6

.4, .4

1 - t. t .61 1.5 ' .11 T 34.5 6 7 8.9 1

FIG. 16. Normal Distribution.
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e The Weibull(p) Distribution, p > 0, is given by

F(x) 0, x < -(ln2) 1/P/a

1 - exp{-[(ln2)/P +ox]P}, x > -(ln2)'/P/a,

with quantile function

- In(l - u)]I /P - (In 2)1/P

density function

f0, x <_ -(ln2)1/P/a

f(z) W ap[(In 2)1/P + z]P- 1

.exp{-[(In2)/P + axP), x > -(In 2)'/P/a,

and density-quantile function

fQ(u) = ap(1 - u)- In(1 - u)J - (11P)+1,

where o = 21(In 4)1/P - (In 4 - In 3)1/P. These functions are plotted in Figure

17.

I istpiihtiu luctim, 1(x) !amtile Factin, I(N)
.1 p:3 4 ,---' .,FL /3 4

.4 .2

-1-.7 -.3 .1 .5 .1 1. 3 12 1 .1.1 . 5 .6.7 .1, 1

D.2Siti Fyuotlee, (x) 2.21 sitkanutil. l mction, fMGs)
r-1/3 r-1 /3

1.2

.4.

G. .9 1.3 bul .2p) D 4atrib7s.son.
FIG. 17. Weibuli(p) Distribution.
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* The Lognormal Distribution is given by

F(z) = $[[n(az + 1)],

with quantile function
e 1 - (u) _1

Q(U)=

density function

f(z) = I[ln(oz + 1)],
ax +1

and density-quantile function

fQ(u) = aO[O-l(u)] e- -'(u)

where a = 2[et-'("75) - et-'('25)]  2.9072. These functions are plotted in

Figure 18.

.istzibutin Function, It(x) mtill function, 3(u)

.6 .2 !.
.4 / , -.21

1.9 sitll function, Ml) 1.91 sitv-4hm tile Faction, MQu)

1.A 1.6
1.2~ 1.2
.. .3
.4 .4 . . .... . .. '
-.3 -.11 , , .. 5.1 .2 .3 L4 .n . .7 ,A ,o 1

FIG. 18. Lognorynal Distribution.
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* The Cauchy Distribution is given by

tan- 4z
if

with quantile function

Q(1) = 'tanif (u- ),

density function
4

7r(I + 16z 2)'

and density-quantile function

fQ(u) = 4 sin2 7ru.

These functions are plotted in Figure 19.

tistiibutio Function, O(x) 1  tile Faction, (u)

A , -.,6 .2*

Nit faction, (x) .3Dsitl-quatile fuction, Mm(s)1.32.

.3 .3

3 - 1-- 3 . .3 .4 .5 .6. .7 . 9

FIG. 19. Cauchy Distribution.
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o The Pareto(p) Distribution, p > 0, is given by

F(z) = {0  <+ (I - 2 1/ P)/ a

1 -[21/P + az]-P, > (1 21/P)/ 0 ,

with quantile function

Q(U) = (1 - u)-/P - 2-/P

a

density function

f (Z 0, x <_ (1 -- 21/P)la
{I :p[21/P + azl- -1), x > (1 - 2 1/P)/o,

and density-quantile function

fQ(U) = ap(1 - u)(1/P)+1,

where a = 2 . 41/P(1 - 3-1/P). These functions are plotted in Figure 20.

1 Distz'iitia fuaction, F(x) _ uantile ructimn, I(u)
.1 44 rr-/ 4 4

.6.

.4

.3 .1 .7 1.3 1.9 2.5 3.5 1 .1 .2 .3 .4 .5 .6 .7 .1 .9 1

2 *mnsitv fuaction, (x) 2.9hSit-uantile function, (4(u)

2 2
1.5k P:1F/4

F IG. 20. Pareto(p) Distributbon.
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The Frdchet(p) Distribution, p > 0, (which is also referred to as the Type II

Extreme Value Distribution) is given by

0o. X < -(1n2)-'/P/a
F(x) = I exp {[(ln2)-1 /P +ZL}-P, z > -(ln2)- 1Pla,

with quantile function

Q(,) = ( )n )1/P - (In2)- /P
a

density function

0, X < -(ln2)-l/P/ '

(X) = nl2)-l /P + ax]-P-1

•exp {-[Iln2)-1/P +az]-P}, z >-(In2)-/P/a,

and density-quantile function

fQ(u) = apu(- In u)(1/ P)+ 1,

where a = 2[(In4 - In3) -/P - (In 4)-1/ P. These functions are plotted in

Figure 21.

1 istitihtie lftin, F(x) haitile FiniN, Us)

3., /I .2
.4 -.2
.-. 6

~p1/3

,. 'A 'S$'6'7'.

l~A lt i4a#till hu1 \ l

. p=3

.4 4

-. 7.1 .5.9 1. 2 . . .. .. .91

FIG. 21. Frihet(p) Distributioni.
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APPENDIX B

PROOFS OF SECTION 2.3 THEOREMS

PROOF OF THEOREM 2.3.1. Consider
f Q(l t)-~ 0 u ( )

hQ(1 - t)[Q(1 - tu) - Q(1 - t)] - f )Q(1 - tt) - Q(1 - 0

_f Q(l - t) /ltq(z)dz
t

f 1-tu fQ(1 - t) Idz

f Q(Z) tN 0 dz

J U fQ(1 - tz).

(I tP+ILIt) _dz
= U (tz)P+1L(tz)

1 L(t)

+= z -P-[L 1dfuL z L(tz) 

+ J -- Z /[ (tz) 1 d

= -g(u;-p) + e(t, U,p).

Since the quantile function of the exceedences over a threshold is

Q X-T I X>T (u;T) = Q(1 - t*(1 - u)) - Q(1 - t*)

where t* = 1 - F(T), the theorem follows. 0

PROOF OF THEOREM 2.3.2(a). If L(u) is a slowly varying function as

u - 0+ , then by Potter's Theorem, for any constants A > 1, a > 0, there exists

T =T ,a) suchthat

L(t)L(z <Am {z,za} forO<t_<T, O<z<l.
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Hence given 0 < 6 < 1,

L(tZ) -

which is an integrable function on (6, 1).

Consider, for p E IR,

f(t, u,p) _ sup f(t, u,p)
6<u<l

=sup z-P- [L t ) 1 dz
6<U< ,(f ) L'

f6 z -P -)dz - z-P-ldz

fz1 j]~d16

- zP-dz - z-P-ldz as t 0+

=0.

Thus, e(t, u, p) -. 0 uniformly in 6 < u < 1. -

PROOF OF THEOREM 2.3.2(b). Under the assumption

L~tu) A (u) R(t)

for some positive measurable functions A(u) and R(t) where limt_.o+ R(t) = 0,

then

I(('U')I:5 -P- IL(t) - 1 dzfu L(tz)Ie(t',p)I <j z-P-i L--z) 1d

< R)z - p -.L A(z)R(t)dz

=R(t). -.. 1 z - P- l A ( z )d z

=A'(u)R(t). F1]
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APPENDIX C

PROOF OF THEOREM 2.4.1

PROOF OF THEOREM 2.4.1. Since fQ(1 - u) = up+IL(u), where p E

IR, p # 0 and L(u) is slowly varying as u -- 0+ , the conditional distribution of

the exceedences can be written

X-T I X>T (u;T) = hQ(1 - t)[-g(1 - u;-p) + E(t*, 1 - up)].

where t* = 1 - F(T).

Let a = a(t*), the scalar value of the function a(.). Then

EXT[X>T [I+P(X-T)]' [In f I + p (X - T ) } ] "

= j[I+aQ X-T I X>T (u)]a [In {+ -T I X>T (U)}] du

f1 - a 1

10 -u) [a(t*)hQ(l - t*]'"

[1 + (1- u)P{pf (t*,1 - u,p) + [a(t*)hQ(1 - t*) - 1]

S{n(1 - u)- - Ina(t*)hQ(1 - t*)

+ In[1 + (1- u)P{pE(t*,1 - u, p) + [a(t*)hQ(1 - t*) - 1]}] }du

f 1(1 - u)-P  [In(1 - u)-P]'

1
[a(t*)hQ(1 - t*)]l

1 1 + (1 - u)P{p(t*, 1 - u,p) + [a(t*)hQ(1 - t*) - 11}

+ In(1 -u)-P

1 + (1- u)P{p(t*,l-u,p) + [a(t*)hQ(1 -t) -11 du.
n [ + - a(t)hQ( - t) )_ du.

If
L(t) A

L(tu) 1 < A(ts)R(t),
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then le(t,u,p)I :5 A*(u)R(t). Also, it is assumed that a(t*)hQ(1 t*) =1+

O(RI(t*)). Hence,

f1 (1 u -P [ln(1 - u ,l0d

If j(i - u)-P [ln(1 - u-]0d

- foo(i - u)-P* [ln(1 - u-~

[a(t*)hQ(l - Oj

*+ (-U)P{pe(t, I - U, p) + [a(t)hQ(1 - t) - 111]

* + ln( -P

In 1 + u)P~pe(t*, 1 - u,p) + [a(t*)hQ(1 * -1) d

In1+ - a(t*)hQ(1 - t*)- -

5 jf'( - u)~ P*In (I - u) -P] Pdu

-o ji - u)-P* [ln(1 u)-P]o

(1 + AfR(t))-

* 1+ (1 - u)P[pA*(l - u)R(t*) + MR 1 (t*))]cl

* - ln1 - 4P n(1 + MR(t)))

* V + -n(1 -

I n(1 + (1 - u)PfpA*(I - u)R(t*) + MR1(t*))) du

5 If(I - u) -P* [ln(1 -u)-]Pd

- 1-u)-P [In(1 - u-~

(+ M Rl(t*))

+A2 - u)P[pA*(1 - u)R(t") + MR1 (ts))J
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SI + Ad3  1 In(1 + MRi(t*)))
ln(1 - u-

( 1 + M41 (1 -P

ln(1 + (1 - u)P[pA(l - u)R(t') + MRI(t"))]) du

!5 IMR 1(t*) j ( - u)-P'~ [ln(l - u)Podu

+ d2 f j( - u)-P(x-1) [ln( - u)-P] [pA*( -u)R(t') +MRj(t*)Jdu

+ IM5R 1(t) fj(1 - u)-P' [ln(1 - u)-P]O-1 du

+ IM6 j ( - U)-P@O-1) [mni - )P6-

[pA'(l - u)R(t') + AdR(t*)]du

where R*(t*) = max{R(t*), Rl(t)}I and Ad' are positive constants.

The other three expectations are found by changing the function a(.) and

following the same arguments. E1
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APPENDIX D

GRADIENT AND HESSIAN OF THE GPD LOG-LIKELIHOOD

Consider the space defined by A = {-1 < p < 0, a > -p. Y([ntn]; [ntn])} u
{p > 0, a > 0}. On the space A, the gradient vector of the GPD log-likelihood

has elements

Oe~aPD(p,a;Y) _ ntn]( ,
C0p = ( + 1 + - -'In I+ --

_+ - I I)

CIJCGPD(p'a;Y) _ [ntn] 1 [._Yl

On the space A, the Hessian matrix of the GPD log-likelihood has elements

°'8 GPD(pa;Y) [ntn 3 2 [nt. 1 --
GIp2 P~ 2 +1 (P In(1+ )

=1

+ + ) n 1j+ P -2,

O2 CGPD(p,a; Y) _ntn] + I I +nt-

8 a2 - ;_ rnt-1
82( ZGPD(p,a; Y) [nt ] + 1 (2+1 F + 1

~49pa p a pa \p a

I ()-
i=a
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APPENDIX E

GRADIENT AND HESSIAN OF THE GEV LOG-LIKELIHOOD

Consider the space defined by A = {-1 < p < 0, a > -p- Y([ntn]; [ntn])} u

{p > 0, a > 0}. On the space A, the gradient vector of the GEV log-likelihood

has elements

GEV(Pa;Y) [nt ] 1 1 Intn 1

8p ~ - (-+I)+i11ln~i ~
09 P (P1 (1 +-1

i=1

+ (1 ntI +pYi\ 1

p p +

_ n, 1+/_
+ (+ Pyj Ini

pa

pa

On the space A, the Hessian matrix of the GEV log-likelihood has elements

82 £GEV(p, a; Y) [n] [nt.)

+_ 1n 1+ +-

p2 --p 1 -"2
t=1

n t .i

+ -a a i Y~(/
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+~ 2fI (+yPY

i=1

I"nt. I I

!-- + (p+ jl

+ Fntltf1(Yy1 Y In ( 1+ !1)

+ z(~+ j/P+ a (a
In. -- z I+ y /P)+ [In (1 + L

+2 GVPGY _Y- 
)n~ 1 ]2,

e~ 2 2 [n. S/)+ nY

+ + [5 yJ (1 L-yl/)

C12 CGEV (p,a; Y) - [ntn ]!(2) [nt.]5J-

Opa p2 8 a Zpa
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+ 1 ( 1+ p y)-li -

pai=1

- ~ 1+ yy(1P)+ in(1 + P
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APPENDIX F

DERIVATI'VES OF HALL'S ESTIMATING EQUATIONS

For the estimating equations used for Hall's estimates for short tailed distri-

butions, the derivatives are given by

aOI(p, Q(1); x - Tn) 1 _(1 _ 1T )__2_

.3 In1(

+ntn Q(1) - Tn

G10I(p, Q(1); X - Tn) 102(P, Q(1); X - Tn)

aQ(1) ap

Q(1) - TnJ
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